The security of sensitive information exchange has become a major topic in recent years. Quantum Key Distribution (QKD) provides a highly secure approach to share random encryption keys between two communication terminals. In contrast with traditional public cryptography methods, QKD security relies on the foundations of quantum mechanics and not on computational capabilities. This makes QKD unconditionally secure (if properly implemented) and it is envisaged as a main component in the next–generation cryptographic technology. QKD has already been successfully demonstrated in different contexts such as fibre-to- fibre, and free-space ground-toground as well as ground-to-air communications. However, Size, Weight and Power (SWaP) constraints have prevented previous implementations to be demonstrated on small form airborne platforms such as Unmanned Aircraft Systems (UAS) and High Altitude Pseudo-Satellites (HAPS). Project Q-DOS aims to deliver a QKD module using compact, cutting-edge photonic waveguide technology, which will allow low-SWaP aerospace requirements to be met. This module uses 1550 nm single photons to implement a BB84 protocol, and will enable the demonstration of a secure, high-speed optical communication data link (~0.5 Gbps) between a drone and a ground station. The targeted link range is 1 km. The airborne communications module, including the QKD terminal, tracking modules, traditional communications systems, optics and control electronics, must not exceed a mass of 5 kg and a power consumption of 20 W.
Quantum key distribution (QKD) is one of the most commercially-advanced quantum optical technologies operating in the single-photon regime. The commercial success of this disruptive technology relies on customer trust. Network device manufacturers have to meet stringent standards in order to ensure the operational security of their devices. The National Physical Laboratory (NPL) and the University of Bristol (Bristol) are working to produce a suite of tests to determine the operating characteristics and implementation security of chip-scale quantum devices designed for security purposes. These tests will inform and provide assurance to potential customers of such devices. Results from initial measurements performed on the Bristol chip-scale transmitter and receiver are presented, with the aim of informing the development of the system.
T. Jennewein, J. P. Bourgoin, B. Higgins, C. Holloway, E. Meyer-Scott, C. Erven, B. Heim, Z. Yan, H. Hübel, G. Weihs, E. Choi, I. D'Souza, D. Hudson, R. Laflamme
Satellites offer the means to extend quantum communication and quantum key distribution towards global distances. We will outline the proposed QEYSSat mission proposal, which involves a quantum receiver onboard a satellite that measures quantum signals sent up from the ground. We present recent studies on the expected performance for quantum links from ground to space. Further studies include the demonstration of high-loss quantum transmission, and analyzing the effects of a fluctuating optical link on quantum signals and how these fluctuations can actually be exploited to improve the link performance.
We report on the progress of our real-time entanglement based free-space quantum key distribution (QKD)
system which uses polarization entangled photon pairs sent over a variety of free-space optical telescope links
to distribute the key. An experiment with one photon from each pair sent over a 1,325 m long free-space link
and the other photon detected locally next to the source is described. The system performs the complete QKD
protocol including all error correction and privacy amplification algorithms. Over the course of 6.5 hours of
communication at night an average raw key rate of 1,398 bits/s with an average quantum bit error rate (QBER)
of 4.58% was observed producing an average final key rate of 244 bits/s. We also performed a Bell inequality
experiment over two free-space links of 435 m and 1,325 m respectively, producing a total separation of 1,575 m
between the two detectors in the experiment. During the Bell inequality experiment we observed an average Bell
parameter of 2.51 ± 0.11.
We have constructed an entanglement based quantum key distribution system that links three buildings, covering
a largest distance of 1575 m. The photons are transmitted via telescopes through free space. In this paper, we
give a detailed description of our system and the protocol that we implemented. We analyze system components
and design considerations. Some preliminary results of a one-link experiment are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.