A precise knowledge of the target infrared signature phenomenology is crucial for the development and improvement of countermeasure and counter-countermeasure systems and so precise quantification of the infrared energy emitted from the targets requires accurate spectral signature measurements. Errors in infrared characterization measurements can lead to weakness in the safety of the countermeasure system and errors in the determination of detection/lock-on range of an aircraft. The infrared signatures are analyzed, modeled, and simulated to provide a good understanding of the signature phenomenology to improve the IRCM and IRCCM technologies efficiency [7,8,9]. There is a growing need for infrared spectral signature measurement technology in order to further improve and validate infrared-based models and simulations.
The addition of imagery to Spectroradiometers is improving the measurement capability of complex targets and scenes because all elements in the scene can now be measured simultaneously. However, the limited dynamic range of the Focal Plane Array (FPA) sensors used in these instruments confines the ranges of measurable radiance intensities. This ultimately affects the radiometric accuracy of these complex signatures. We will describe and demonstrate how the ABB hyperspectral imaging spectroradiometer features enhanced the radiometric accuracy of spectral signature measurements of infrared military targets.
The developments of optical methods to characterize soils and various surface contaminants require complete and reliable databases of spectral signatures of various objects, including chemical and representative background surfaces. Ideally, the databases should be acquired in the field to properly consider the chemical mixing and heterogeneity of the surfaces. Spectral characterization instruments are common in the visible and the shortwave infrared but there are few solutions in the midwave and thermal infrared regions.
ABB recently developed a broad band reflectometer based on a small FTIR spectrometer. It is capable of measuring diffuse spectral reflectance from various surfaces in the infrared from 0.7 to 13.5 microns. This sensor has been developed to be operated in the field by one person. It is lightweight (about 12 kg); it is battery powered and ruggedized for operation in harsh environments. Its operation does not require sophisticated training; it has been designed to be operated by a non-specialist. The sensor can be used to generate spectral libraries or to perform material identification if a spectral library already exists.
Examples of measurements in the field will be presented.
The ABB Hyperspectral Imaging Spectroradiometer (MR-i), configured for gas detection detects and identifies a wide variety of chemical species including toxic industrial chemicals (TICs) and surrogates several kilometers away from the sensor. This configuration is called iCATSI for improved Compact Atmospheric Sounding Interferometer. iCATSI is a standoff passive system.
The modularity of the MR-i platform allows optimization of the detection configuration with a 256 x 256 Focal Plane Array imager or a line scanning imager both covering the long wave IR atmospheric window up to 14 μm. The uniqueness of its extended LWIR cut off enables to detect more chemicals as well as provide higher probability of detection than usual LWIR sensors.
View contact details