KEYWORDS: Rectum, Colon, Magnetic resonance imaging, Image segmentation, Binary data, Visualization, In vivo imaging, Visual process modeling, Pathophysiology, Image acquisition
The rectum can distend to accommodate stool, and contracts in response to distention during defecation. Rectal motor dysfunctions are implicated in the pathophysiology of functional defecation disorders and fecal incontinence. These rectal motor functions can be studied by intra-luminal measurements of pressure by manometry, or combined with volume during rectal balloon distention. Pressure-volume (p-v) relationships provide a global index of rectal mechanical properties. However, balloon distention alone does not measure luminal radius or wall thickness, which are necessary to compute wall tension and stress respectively. It has been suggested that the elastic modulus, which is the linear slope of the stress-strain relationship, is a more accurate measure of wall stiffness. Also, measurements of compliance may not reflect differences in rectal diameter between subjects prior to inflation, and imaging is necessary to determine if, as has been suggested, rectal pressure-volume relationships are affected by extra-rectal structures.
We have developed a technique to measure rectal stress:strain relationships in humans, by simultaneous magnetic resonance imaging (MRI) during rectal balloon distention. After a conditioning distention, a rectal balloon was distended with water from 0 to 400 ml in 50 ml steps, and imaged at each step with MRI. The fluid filled balloon was segmented from each volume, the phase-ordered binary volumes were transformed into a geometric characterization of the inflated rectal surface. Taken together with measurements of balloon pressure and of rectal wall thickness, this model of the rectal surface was used to calculate regional values of curvature, tension, strain, and stress for the rectum. In summary, this technique has the unique ability to non-invasively measure the rectal stress:strain relationship and also determine if rectal expansion is limited by extra-rectal structures. This functional information allows the direct clinical analysis of rectal motor function and offers the potential for characterizing abnormal mechanical properties of the rectal wall in disease.
While lung anatomy is well understood, pulmonary structure-to-function relationships such as the complex elastic deformation of the lung during respiration are less well documented. Current methods for studying lung anatomy include conventional chest radiography, high-resolution computed tomography (CT scan) and magnetic resonance imaging with polarized gases (MRI scan). Pulmonary physiology can be studied using spirometry or V/Q nuclear medicine tests (V/Q scan). V/Q scanning and MRI scans may demonstrate global and regional function. However, each of these individual imaging methods lacks the ability to provide high-resolution anatomic detail, associated pulmonary mechanics and functional variability of the entire respiratory cycle. Specifically, spirometry provides only a one-dimensional gross estimate of pulmonary function, and V/Q scans have poor spatial resolution, reducing its potential for regional assessment of structure-to-function relationships. We have developed a method which utilizes standard clinical CT scanning to provide data for computation of dynamic anatomic parametric models of the lung during respiration which correlates high-resolution anatomy to underlying physiology. The lungs are segmented from both inspiration and expiration three-dimensional (3D) data sets and transformed into a geometric description of the surface of the lung. Parametric mapping of lung surface deformation then provides a visual and quantitative description of the mechanical properties of the lung. Any alteration in lung mechanics is manifest by alterations in normal deformation of the lung wall. The method produces a high-resolution anatomic and functional composite picture from sparse temporal-spatial methods which quantitatively illustrates detailed anatomic structure to pulmonary function relationships impossible for translational methods to provide.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.