The Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM) mission has been selected in September 2019 as the 9th Earth Explorer mission of the European Space Agency. The mission aims to measure the Earth’s Top-Of- Atmosphere (TOA) emission spectrum in the spectral region from 100 to 1600 cm-¹ (i.e. 6.25 to 100 μm). This will fill the current observational gap from space in the far-infrared region (FIR) from 100 to 667 cm-¹ (i.e. from 15 to 100 μm). FORUM measurements will improve the understanding of the climate system by providing, for the first time with high resolution, the spectral features of the far-infrared emission of the Earth with a focus on the contribution to the radiation budget of the continuum absorption of the water vapour rotational bands, on cirrus cloud properties, and on ice/snow surface emissivity. The FORUM mission requires a payload able to spectrally-resolve the Earth's outgoing longwave radiation across the Far-InfraRed (FIR) spectral range with high absolute radiometric accuracy. Characterisation of the surface, atmospheric and cloud/surface heterogeneity in the observed field-of-view is also required to help interpret the measured spectral radiance. These needs dictate the use of two instruments: a spectrometer and an infrared imager. The concepts of both instruments, thoroughly studied in phase A preparatory activities by two independent industrial consortia, are presented in this paper.
We report on an error source and a possible correction which occurs with Fourier Transform Spectrometers due to the use of an integrating detector.
The new class of imaging Fourier-Transform-Spectrometers (FTS) is in many cases best realised using continuously moving mirrors and an integrating array detector with fixed frame rate. In case of not perfectly constant optical path difference (OPD) speed, this corresponds to an irregular OPD sampling, resulting in radiometric errors. This effect is well-known and can be solved by resampling, i.e. interpolation on a regular OPD grid.
A less known effect is caused by the detector integrating over constant time intervals, which – like the sampling steps - are also of varying length in the OPD domain due to the non-constant OPD speed. The resulting error is discussed in the presented paper, where also an elegant correction method is proposed.
Constant-width integration in the OPD domain acts as a spatial low-pass filter on the interferogram. If the integration width varies, a modulation is applied to the interferogram’s envelope. This modulation results in a radiometric error in the spectrum.
The presented correction is a finite impulse response filter with only three taps, to be applied to the measured time-sampled interferogram before resampling. In case the interpolation is done with filters, these filters and the new 3-tap filter can be combined to reduce processing overhead.
Spectrometers for Earth Observation require inflight radiometric calibration, for which the sun can be used as a known reference. For wide field instruments, a diffuser is placed in front of the spectrometer, scattering incoming sun light into the entrance slit and ensuring a homogenous illumination. As drawback, the diffuser induces a specific radiometric error caused by interference, which is called Spectral Features.
The scattering of the incident light at the diffuser induces a random path difference yielding a specific interference pattern at the entrance slit, known as speckle pattern. These speckles are propagated through the disperser to the detector plane and further integrated by the detector pixels. The resulting feature can yield a significant signal error contribution, whose spectral variation is referred to as spectral features. The magnitude of this error is evaluated in terms of the Spectral Features Amplitude (SFA), the ratio of the signal standard deviation with its mean value over a specific wavelength range.
There have been several ways implemented to measure the SFA of a spectrometer, e.g. end-to-end measurements with representative instruments. Typically the measurement accuracy is not sufficient to isolate the SFA from other radiometric errors. As a consequence, the instrument layout can hardly be optimized to suppress Spectral Features.
We propose a novel characterization technique for Spectral Features based on the direct acquisition of monochromatic speckle patterns at the entrance slit. This allows the observation of Spectral Features below the level of the spectrometer spectral and spatial resolution. The Spectral Features are derived from various observed speckle patterns by properly mimicking the real spectrometer in the data analysis. With this measurement technique we are able to gain insight into the mechanism behind speckle induced Spectral Features. This insight will be used to develop a parameterized model facilitating the design of future space based spectrometers.
Sentinel-5/UVNS 1 is an Earth observation spectrometer system that is operating in nadir looking push broom mode from a low Earth orbit. While having a wide across-track field of view (≈ 2700 km) it covers approximately 7 km at nadir in flight direction during one dwell. However a high contrast in the scene in along track may lead to disturbance of the Instrument Spectral Response Function (ISRF) and with this a variation of measured spectrum. In order to reduce the effect of scene contrast along track, instead of a spectrometer slit two mirrors are introduced, in between which the light path is extended such as a one dimensional wave guide. The entrance length across track however is wide enough to let light pass unchanged. This new concept is called Slit Homogenizer (SH) within theSentinel-5 project. The entrance of the SH is placed on the image plane of the preceding op- tics. The exit of the SH represents the object plane of the subsequent spectrometer in the along track (spectral) direction. This article proposes a simulation model of a SH together with a preced- ing generic optics based on scalar diffraction theory. The model is used to evaluate quantitatively the homogenizing ability of the device. Some parameters in the discussed examples are taken from Sentinel-5/UVNS instrument but the model and its application is not limited to that mission.
The Sentinel-5 instrument is currently under development by a consortium led by Airbus Defence and Space in the frame of the European Union Copernicus program. It is a customer furnished item to the MetOp Second Generation satellite platform, which will provide operational meteorological data for the coming decades. Mission objective of the Sentinel-5 is to monitor the composition of the Earth atmosphere for Copernicus Atmosphere Services by taking measurements of trace gases and aerosols impacting air quality and climate with high resolution and daily global coverage. Therefore the Sentinel-5 provides five dispersive spectrometers covering the UV-VIS (270…500 nm), NIR (685 …773 nm) and SWIR (1590…1675 and 2305…2385 nm) spectral bands with resolutions ≤1nm. Spatially the Sentinel-5 provides a 108° field of view with a ground sampling of 7.5 x 7 km2 at Nadir. The development program is post PDR and the build-up of the industrial team is finalised. We report on the instrument architecture and design derived from the driving requirements, the predicted instrument performance, and the general status of the program.
Many current and future earth observation satellites include spectrometer instruments, due to their suitability for identifying atmospheric gases through spectral signatures. Space based spectrometer instruments, such as the Sentinel-5-UVNS instrument (S5)[1] for the polar-orbiting MetOp Second Generation satellite, require appropriate calibration to incident sunlight in order to provide radiometrically accurate data. To ensure homogenous illumination of the entrance slit of the spectrometer during sunlight calibration, a diffuser is used to scatter the incoming light [1]. One contribution to inaccuracy in sunlight calibration is spectral features, an interference phenomenon resulting from scattering off the calibration unit diffuser [2].
The scattering of the incident light at the diffuser induces path differences, which yield a speckle pattern in the entrance slit. These speckles are still present at the focal plane of modern spectrometers through a combination of the high spectral and spatial resolution [2] [3]. Spectral features originate from the spectral integration of speckles in the slit to the spectrometer detector plane and further integration by the detector pixels [1]. The spectral variation following pixel integration is known as spectral features. The magnitude of this error is evaluated in terms of the Spectral Features Amplitude (SFA), the ratio of the signal standard deviation with its mean value, within a specific wavelength range [4].
This work proposes a novel measurement technique. This method is based on the acquisition of monochromatic speckle patterns in the slit over a finely sampled wavelength range. The net spectral features at the spectrometer detector are evaluated through post processing, by integrating acquired speckle patterns along the spectral resolution, and detector pixels. A key advantage of the proposed technique is the fine sampling and observation of the interference structures that make up spectral features, below the level of a spectrometer pixel. The simplified optical system and simulation of an idealised spectrometer reduces the error contributions when compared to measurement using an entire spectrometer.
The goal of this investigation is the measurement of the S5 spectral features amplitude associated with the Heraeus Optical Diffuser (HOD), a volume diffuser, and the TNO quasi volume diffuser (QVD), in conjunction with qualitative insight into the mechanism behind speckle induced spectral features, supporting the design of future spectrometers.
This paper is structured as follows: Section II details the system designed to acquire monochromatic speckle patterns. The monochromatic speckle patterns are obtained using a tuneable laser capable of wavelength steps below the speckle decorrelation wavelength, as investigated in III. Section IV outlines how monochromatic speckles are integrated to spectral features, and reports the SFA values for the HOD and QVD. The spectral features results are discussed in light of this inference in Section V, with conclusions presented in Section VI.
Performance requirements result that todays’ imaging spectrometers as Sentinel-5 make use of array CCDs to simultaneously measure the entire spectrum of several adjacent spatial samples. Due to radiation doses accumulated during the mission lifetime, defects acting as traps for charges are generated in the silicon matrix. The charges captured therein result in a drop of charge transfer efficiency i.e. an increase of charge transfer inefficiency (CTI). CTI leads to a faint signal trail for each pixel in the opposite direction to the read out. In spectrographs this results into a smear out of the spectral content, leading to an error in the retrieved trace gas concentrations. However, similar to astronomical and imaging applications, the spectrum can be corrected in the post processing. In this paper an alternative approach is discussed, which incorporates the impact of CTI in the spectral response function (ISRF) of the instrument that consequently allows for monitoring of CTI evolution and correction of its impact.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.