Fourier phase gratings play a vital role in the multi-beam heterodyne receiver in sub-millimeter astronomical instruments. In this study, a 1×4 beam grating at 660 GHz is developed, by which the surface structure is generated with an iterative algorithm. Far-field beam pattern is simulated with FEKO, where a relative high efficiency of 91% as well as a uniformity of power distribution among 4 beams of less than 1% are obtained. The grating was manufactured in aluminum material by a micro-milling machine. A PC-controlled scanning stage is employed for the beam pattern measurement. Despite the discrepancy from the manufacture of less than 6 μm, measurement results exhibit a good agreement with simulation in both power efficiency and far-field spatial distribution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.