The Water Recovery X-Ray Rocket (WRXR) was a suborbital rocket payload that was launched and recovered in April 2018. The WRXR flew two technologies being developed for future large x-ray missions: x-ray reflection gratings and a hybrid CMOS detector (HCD). The large-format replicated gratings on the WRXR were measured in ground calibrations to have absolute single-order diffraction efficiency of ∼60 % , ∼50 % , and ∼35 % at CVI, OVII, and OVIII emission energies, respectively. The HCD was operated with ∼6 e − read noise and ∼88 eV energy resolution at 0.5 keV. The WRXR was also part of a two-payload campaign that successfully demonstrated NASA sounding rocket water recovery technology for science payloads. The primary instrument, a soft x-ray grating spectrometer, targeted diffuse emission from the Vela supernova remnant over a field-of-view >10 deg2. The flight data show that the detector was operational during flight and detected x-ray events from an on-board calibration source, but there was no definitive detection of x-ray events from Vela. Flight results are presented along with a discussion of factors that could have contributed to the null detection.
The Water Recovery X-ray Rocket (WRXR) mission was a sounding rocket flight that targeted the northern part of the Vela supernova remnant with a camera designed to image the diffracted X-rays using a grating spectrometer optimized for OVII, OVIII, and CVI emissions. The readout camera for WRXR utilized a silicon hybrid CMOS detector (HCD) with an active area of 36.9 36.9 mm. A modified H2RG X-ray HCD, with 1024 1024 active silicon pixels bonded to the H2RG read-out integrated circuit, was selected for this mission based on its characteristics, technology maturation, and ease of implementation into the existing payload. This required a new camera package for the HCD to be designed, built, calibrated, and operated. This detector and camera system were successfully operated in-flight and its characteristics were demonstrated using the on-board calibration X-ray source. In this paper, a detailed description of this process, from design concept to flight performance, will be given. A full integrated instrument calibration will also be discussed, as well as the temperature dependency measurements of gain variation, read noise, and energy resolution for the HCD.
The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≈40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.