High-power fiber lasers have become one of the most important tools for material processing in the last decade. Laserline GmbH, which is primarily known for its multi-kilowatt direct-diode lasers, also introduced a fiber-laser platform as a brightness converter for its direct-diode lasers a few years ago. Currently, output powers up to 6 kW at beam qualities down to 4 mm mrad are commercially available. The platform is based on a single directly water-cooled ytterbium doped XLMA (extra-large mode area) fiber in an end-pumped configuration, which can easily be combined in series with a standard diode laser. In this paper, we present the latest progress in power scaling of our fiber-laser system. By improving the material properties of the active fiber, the thermal management and the thermo-mechanical stability of the resonator, up to 10 kW output power from a single, unidirectionally pumped fiber-laser oscillator with a beam parameter product in the range of 4 mm mrad to 8 mm mrad is demonstrated. Further power scaling up to 17.5 kW with 8 mm mrad was achieved by bidirectional pumping of the active fiber. In both cases, a rather high optical conversion efficiency of 75-77 % leads to a wall-plug efficiency of ~35 % for the whole laser system. Currently, we do not observe any physical limits, such as nonlinear effects for example.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.