Transmission spectroscopy facilitates the detection of molecules and/or clouds in the atmospheres of exoplanets. Such studies rely heavily on space-based or large ground-based observatories, as one needs to perform time-resolved, high signal-to-noise spectroscopy. The FORS2 instrument at ESO's Very Large Telescope is the obvious choice for performing such studies, and was indeed pioneering the field in 2010. After that, however, it was shown to suffer from systematic errors caused by the Longitudinal Atmospheric Dispersion Corrector (LADC). This was successfully addressed, leading to a renewed interest for this instrument as shown by the number of proposals submitted to perform transmission spectroscopy of exoplanets. We present here the context, the problem and how we solved it, as well as the recent results obtained. We finish by providing tips for an optimum strategy to do transmission spectroscopy with FORS2, in the hope that FORS2 may become the instrument of choice for ground-based transmission spectroscopy of exoplanets.
The High Acuity Wide field K-band Imager (HAWK-I) instrument is a cryogenic wide field imager operating in the wavelength range 0.9 to 2.5 microns. It has been in operations since 2007 on the UT4 at the Very Large Telescope Observatory in seeing-limited mode. In 2017-2018, GRound Layer Adaptive optics Assisted by Lasers module (GRAAL) will be in operation and the system GRAAL+HAWK-I will be commissioned. It will allow: deeper exposures for nearly point-source objects, or shorter exposure times for reaching the same magnitude, and/or deeper detection limiting magnitude. With GRAAL, HAWK-I will operate more than 80% of the time with an equivalent K-band seeing of 0.55" (instead of 0.7" without GRAAL). GRAAL is already installed and the operations without adaptive optics were commissioned in 2015. We discuss here the latest updates on performance from HAWK-I without Adaptive Optics (AO) and the preparation for the commissioning of the system GRAAL+HAWK-I.
We present an overview of the VISIR instrument after its upgrade and return to science operations. VISIR is the midinfrared imager and spectrograph at ESO’s VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan was based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array manufactured by Raytheon. In addition, a new prism spectroscopic mode covers the whole N-band in a single observation. Finally, new scientific capabilities for high resolution and high-contrast imaging are offered by sub-aperture mask and coronagraphic modes. In order to make optimal use of favourable atmospheric conditions, a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012, it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise. It is inherent to the design chosen for this detector and cannot be remedied by changing the detector set-up. Since this is a form of correlated noise, its impact can be limited by modulating the scene recorded by the detector. After careful analysis, we have implemented fast (up to 4 Hz) chopping with field stabilization using the secondary mirror of the VLT. During commissioning, the upgraded VISIR has been confirmed to be more sensitive than the old instrument, and in particular for low-resolution spectroscopy in the N-band, a gain of a factor 6 is realized in observing efficiency. After overcoming several additional technical problems, VISIR is back in Science Operations since April 2015. In addition an upgrade of the IT infrastructure related to VISIR has been conducted in order to support burst-mode operations. Science Verification of the new modes was performed in Feb 2016. The upgraded VISIR is a powerful instrument providing close to background limited performance for diffraction-limited observations at an 8-m telescope. It offers synergies with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey works like WISE. In addition, it will bring confirmation of the technical readiness and scientific value of several aspects for future mid-IR instrumentation at Extremely Large Telescopes. We also present several lessons learned during the project.
We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO’s
VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and
ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific
performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of
instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector
array (Raytheon) which has been carefully characterized in ESO’s IR detector test facility (modified TIMMI 2
instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for
high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic
(4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has
been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water
vapour. During the commissioning in 2012 it was found that the on-sky sensitivity of the AQUARIUS detector was
significantly below expectations and that VISIR was not ready to go back to science operations. Extensive testing of the
detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as
excess low frequency noise (ELFN). It is inherent to the design chosen for this detector and can’t be remedied by
changing the detector set-up. Since this is a form of correlated noise its impact can be limited by modulating the scene
recorded by the detector. We have studied several mitigation options and found that faster chopping using the secondary
mirror (M2) of the VLT offers the most promising way forward. Faster M2 chopping has been tested and is scheduled
for implementation before the end of 2014 after which we plan to re-commission VISIR. In addition an upgrade of the IT
infrastructure related to VISIR is planned in order to support burst-mode operations. The upgraded VISIR will be a
powerful instrument providing close to background limited performance for diffraction-limited observations at an 8-m
telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is
available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and
scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes.
We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO’s
VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and
ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific
performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of
instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As Aquarius detector
array (Raytheon) which has demonstrated very good performance (sensitivity, stability) in the laboratory IR detector test
facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New
scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and
phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a
water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a userdefined
constraint on water vapour. Improved pipelines based on the ESO Reflex concept will provide better support to
astronomers. The upgraded VISIR will be a powerful instrument providing background limited performance for
diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI
and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring
confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at
Extremely Large Telescopes. The intervention on VISIR and installation of hardware has been completed in July and
commissioning will take place during July and August. VISIR is scheduled to be available to the users starting Oct 2012.
EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine
astronomical organizations, and research network operators, part-funded under the European Commission FP7, to create
and exploit high-speed bandwidth connections to the observatories of Cerro Paranal and Cerro Armazones in Chile. The
communication infrastructure was delivered in November 2010 and this paper reports on the initial results of the project
and the demonstrations of its capabilities, including the possibilities that the new infrastructure opens up in the
geographically distributed operation of the observatories.
The ESO's VLT Spectrometer and Imager for the Mid-Infrared (VISIR) has been in operation at the Paranal
Observatory since 2005. It is equipped with two DRS (formerly Boeing) 256 × 256 BIB arrays. The project to
replace detectors into new Raytheon, 1k × 1k AQUARIUS devices as well as to modify observing modes, software,
etc. is underway. The VISIR upgrade creates a well defined break point in the instruments' characteristics. For
nearly 7 years of the VISIR operations we have been collecting and processing calibration data, in particular
observations of the imaging and spectroscopic standard stars, within a regular data flow operation scheme. The
derived quality control parameters have been systematically written into a database, which allows the analysis
of their temporal behavior. We present an overview of the long term variations of the VISIR quality control
parameters: sensitivity, conversion factor and mean background level estimations. The results will be later used
to compare performance of VISIR before and after the upgrade.
The European Southern Observatory (ESO) is preparing to upgrade VISIR, the mid-IR imager and spectrograph at the
VLT. The project team is comprised of ESO staff and members of the original consortium that built VISIR: CEA Saclay
and ASTRON. The goal is to enhance the scientific performance of VISIR and to facilitate its use by the ESO
community. In order to capture the needs of the user community, we collected input from the users by means of a webbased
questionnaire. In line with the results of the internal study and the input from the user community, the upgrade
plan calls for a combination measures: installation of improved hardware, optimization of instrument operations and
software support. The limitations of the current detector (sensitivity, cosmetics, artifacts) have been known for some
time and a new 1k x 1k Si:As Aquarius array (Raytheon) will be the cornerstone of the VISIR upgrade project. A
modified spectroscopic mode will allow covering the N-band in a single observation. Several new scientific modes (e.g.,
polarimetry, coronagraphy) will be implemented on a best effort basis. In addition, the VISIR operational scheme will be
enhanced to ensure that optimal use of the observing conditions will be made. Specifically, we plan to provide a means
to monitor precipitable water vapour (PWV) and enable the user to specify it as a constraint set for service mode
observations. In some regions of the mid-IR domain, the amount of PWV has a fundamental effect on the quality of a
given night for mid-IR astronomy. The plan also calls for full support by ESO pipelines that will deliver science-ready
data products. Hence the resulting files will provide physical units and error information and all instrumental signatures
will have been removed. An upgraded VISIR will be a powerful instrument providing diffraction-limited performance at
an 8-m telescope. Its improved performance and efficiency as well as new science capabilities will serve the needs of the
ESO community but will also offer synergy with various other facilities such as ALMA, JWST, VLTI and SOFIA. A
wealth of targets for detailed study will be available from survey work done by VISTA and WISE. Finally, the upgraded
VISIR will also serve as a pathfinder for potential mid-IR instrumentation at the European Extremely Large Telescope
(E-ELT) in terms of technology as well as operations.
CRIRES is a cryogenic, pre-dispersed, infrared Echelle spectrograph designed to provide a nominal resolving
power ν/Δν of 105 between 1000 and 5000 nm for a nominal slit width of 0.2". The CRIRES installation at
the Nasmyth focus A of the 8-m VLT UT1 (Antu) marks the completion of the original instrumentation plan
for the VLT. A curvature sensing adaptive optics system feed is used to minimize slit losses and to provide 0.2"
spatial resolution along the slit. A mosaic of four Aladdin InSb-arrays packaged on custom-fabricated ceramic
boards has been developed. It provides for an effective 4096 × 512 pixel focal plane array to maximize the free
spectral range covered in each exposure. Insertion of gas cells is possible in order to measure radial velocities with
high precision. Measurement of circular and linear polarization in Zeeman sensitive lines for magnetic Doppler
imaging is foreseen but not yet fully implemented. A cryogenic Wollaston prism on a kinematic mount is already
incorporated. The retarder devices will be located close to the Unit Telescope focal plane. Here we briefly recall
the major design features of CRIRES and describe the commissioning of the instrument including a report of
extensive testing and a preview of astronomical results.
The ESO's VISIR instrument at Paranal is dedicated to observations in two mid-infrared (MIR) atmospheric
windows: N-band (8-13 micron) and Q-band (16.5-24.5 micron). It is equipped with two DRS (formerly Boeing)
256 × 256 BIB detectors operating at temperatures of about 5 K. As in case of other Paranal instruments
VISIR data are regularly transferred to ESO Garching within the standard data flow operation. There, they are
classified and pipeline-processed. The products of VISIR technical data are analyzed in order to trend instrument
performance, while calibrations and science data are checked for quality and later distributed to the users. Over
the three years of VISIR operations we have been constantly gaining more experience in methods of assessing
health of the instrument. In particular, we found that dark frames are particularly useful for monitoring the
VISIR detectors. We also discuss performance of the "OCLI" silicate filters recently mounted in the instrument.
VISIR is the new ESO VLT instrument mounted at the Cassegrain focus of Melipal (UT3) telescope. At Paranal it is the very first instrument capable of high sensitivity imaging in the N band and Q band mid infrared atmospheric windows. In addition, it features a long-slit spectrometer with a range of spectral resolutions between 150 and 30000. VISIR had been included in the standard VLT data flow operation even before regular observing started in March/April 2005. Data products are pipeline-processed and quality checked by the Data Flow Operations Group in Garching. The calibration data are processed to create calibration products and to extract Quality
Control parameters. These parameters provide health checks and monitor instrument's performance. They are stored in a database, compared to earlier data, trended over time and made available on the VISIR Quality Control web pages that are updated daily. We present the parameters that were designed to assess quality of the data and to monitor performance of the MIR instrument. We also discuss the general process of data flow and data inspection.
The Nasmyth Adaptive Optics System (NAOS) and the High-Resolution Near
IR Camera (CONICA) are mounted at the Nasmyth B focus of Yepun (UT4)
telescope of the ESO VLT. NACO (NAOS+CONICA) is an IR (1-5 micron)
imager, spectrograph, coronograph and polarimeter which is fed by the
NAOS - the first adaptive optics system installed on Paranal. NACO
data products are pipeline-processed, and quality checked, by the Data
Flow Operations Group in Garching. The calibration data are processed
to create calibration products and to extract Quality Control (QC)
parameters. These parameters provide health checks and monitor
instrument's performance. They are stored in a database, compared to
earlier data, trended over time and made available on the NACO QC web
page that is updated daily.
NACO is an evolving instrument where new observing modes are offered
with every observing period. Naturally, the list of QC parameters that
are monitored evolves as well. We present current QC parameters of
NACO and discuss the general process of controlling data
quality and monitoring instrument performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.