This study introduces a framework to approximate the bias inflicted by CNN noise reduction of CT exams. First, CNN noise reduction was used to approximate the noise-free image and noise-only image of a CT scan. The noise and signal were then recombined with spatial decoupling to simulate an ensemble of 100 images. CNN noise reduction was applied to the simulated ensemble and pixel-wise bias calculated. This bias approximation technique was validated within natural images and phantoms. The technique was then tested on ten whole-body-low-dose CT (WBLD-CT) patient exams. Bias correction led to improved contrast of lung and bone structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.