The detection of biomarkers by means of Surface Enhanced Raman Spectroscopy (SERS) is foreseen to became a very important tool in the clinical practice because of its excellent sensitivity and potential for the simultaneous detection of multiple biomarkers. In the present paper we describe how it was possible to build a sensor for the detection of genetic biomarkers involved in acute myeloid leukemia. The assay is based on the use of a specifically designed SERS substrate made of a 2D crystal structure of polymeric pillars embedded in a gold layer. This substrate is characterized by good enhancing properties coupled with an excellent homogeneity. The SERS substrate was conjugated with DNA probes complementary to a target sequence and used in a sandwich assay with gold nanoparticles labeled with a second DNA probe and a Raman reporter. The so developed assay allowed the detection of a leukemia biomarker (WT1 gene) and an housekeeping gene with low picomolar sensitivity. At last, we optimized the assay in order to tackle one of the main limitations of SERS based assay: the loss of signal that is observed when the Raman spectra are collected in liquid. Combining a preferential functionalization on the polymeric pillars with a different height of the polymer pillars from the gold layer the assay demonstrated its effectiveness even when measured in buffer.
Acute myeloid leukemia (AML) is a proliferative neoplasm, that if not properly treated can rapidly cause a fatal
outcome. The diagnosis of AML is challenging and the first diagnostic step is the count of the percentage of blasts
(immature cells) in bone marrow and blood sample, and their morphological characterization. This evaluation is still
performed manually with a bright field light microscope. Here we report results of a study applying Raman spectroscopy
for analysis of samples from two patients affected by two AML subtypes characterized by a different maturation stage in
the neutrophilic lineage. Ten representative cells per sample were selected and analyzed with high-resolution confocal
Raman microscopy by scanning 64x64 (4096) points in a confocal layer through the volume of the whole cell. The
average spectrum of each cell was then used to obtain a highly reproducible mean fingerprint of the two different AML
subtypes. We demonstrate that Raman spectroscopy efficiently distinguishes these different AML subtypes. The
molecular interpretation of the substantial differences between the subtypes is related to granulocytic enzymes (e.g.
myeloperoxidase and cytochrome b558), in agreement with different stages of maturation of the two considered AML
subtypes . These results are promising for the development of a new, objective, automated and label-free Raman based
methods for the diagnosis and first assessment of AML.
The Wilms tumor gene (WT1) is a biomarker overexpressed in more than 90% of acute myeloid leukemia patients. Fast and sensitive detection of the WT1 in blood samples would allow monitoring of the minimal residual disease during clinical remission and would permit early detection of a potential relapse in acute myeloid leukemia. In this work, Surface Enhanced Raman Spectroscopy (SERS) based detection of the WT1 sequence using bifunctional, magnetic core – gold shell nanoparticles is presented. The classical co-precipitation method was applied to generate magnetic nanoparticles which were coated with a gold shell after modification with aminopropyltriethoxy silane and subsequent deposition of gold nanoparticle seeds. Simple hydroquinone based reduction procedure was applied for the shell growing in water based reaction mixture at room temperature. Thiolated ssDNA probes of the WT1 sequence were immobilized as capture oligonucleotides on the gold surface. Malachite green was applied both for testing the amplification performance of the core-shell colloidal SERS substrate and also as label dye of the target DNA sequence. The SERS enhancer efficacy of the core-shell nanomaterial was compared with the efficacy of classical spherical gold particles produced using the conventional citrate reduction method. The core-shell particles were found not only to provide an opportunity for facile separation in a heterogeneous reaction system but also to be superior regarding robustness as SERS enhancers.
Surface Enhanced Raman Spectroscopy is a powerful analytical technique that combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by the enhancement of the signal observed when a molecule is located on (or very close to) the surface of suitable nanostructured metallic materials. The availability of cheap, reliable and easy to use SERS substrates would pave the road to the development of bioanalytical tests that can be used in clinical practice. SERS, in fact, is expected to provide not only higher sensitivity and specificity, but also the simultaneous and markedly improved detection of several targets at the same time with higher speed compared to the conventional analytical methods. Here, we present the SERS activity of 2-D plasmonic crystals made by polymeric pillars embedded in a gold matrix obtained through the combination of soft-lithography and plasma deposition techniques on a transparent substrates. The use of a transparent support material allowed us to perform SERS detection from support side opening the possibility to use these substrates in combination with microfluidic devices. In order to demonstrate the potentialities for bioanalytical applications, we used our SERS active gold surface to detect the oxidation product of apomorphine, a well-known drug molecule used in Parkinson’s disease which has been demonstrated being difficult to study by traditional HPLC based approaches.
Surface Enhanced Raman Spectroscopy (SERS) is a popular method in bio-analytical chemistry and a potentially powerful enabling technology for in vitro diagnostics. SERS combines the excellent chemical specificity of Raman
spectroscopy with the good sensitivity provided by enhancement of the signal that is observed when a molecule is
located on (or very close to) the surface of nanostructured metallic materials. Star-like gold nanoparticles (SGN) are a new class of multibranched nanoparticles that in the last few years have attracted the attention of SERS community for their plasmonic properties. In this work we present a new method to prepare star-like gold nanoparticles with a simple one step protocol at room temperature using hydroquinone as reducing agent. Besides we compare the enhancement of Raman signal of malachite green, a dye commonly employed as label in biological studies, by star-like gold nanoparticles having different size, directly in liquid. This study shows that SGN provide good enhancement of Raman signal and that the effect of their dimension is strongly dependent on the wavelength used. Moreover preliminary results suggest that SGN produced using this method are characterized by good physical-chemical properties and they can be functionalized using the standard thiol chemistry. Overall, these results suggest that star-like gold nanoparticles produced through this method could be used for the further development of highly specific and sensitive SERS-based bio-analytical tests.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.