Catastrophic bushfires are becoming increasingly prevalent as climate change advances. Impacts extend beyond national borders. Multinational efforts can inform new science and management practices. Space-based sensors and integrated data facilities will play an important role. This paper describes a collaborative project between a consortium of Australian universities and NASA Centers to develop and implement a small satellite platform comprising highly integrated thermal and lightning sensors coupled with AI-based edge computing to help predict, detect, and track bushfires, supporting mitigation activities. This will fill an important capability gap since Australia does not currently have any sovereign Earth observation satellites. This program is enabled by and builds on Australia-NASA collaboration and will also support fire science and management activities in the broader global context.
The limited bandwidth and security provided by radio frequency communications between the ground and space can be overcome with optical communications. The smaller beam divergence and high carrier frequency increase the bandwidth and brings with it the potential of achieving a global communications network with absolute security using quantum states to transmit encryption keys, also known as Quantum Key Distribution (QKD). A drawback of ground-to-satellite optical communications, however, is that clouds provide effectively complete blockage of the beam. This can be mitigated by means of receiver site diversity, in which a network of geographically dispersed receivers provides far higher link availability.
We present a proposal for a network of optical ground stations in Australia and New Zealand for optical communications to provide secure satellite links for the growing space-based market. Optical ground station nodes in the Australian Capital Territory and South Australia have been funded and are currently being planned. Partial funding for other nodes in Western Australia and New Zealand has also been achieved. Funding for infrastructure is being sought to tie these stations together to produce a world leading optical communication network. This presents an opportunity for our nations to become a space-to-ground data highway and become a leading provider of secure satellite links for a large and growing market. In order to take advantage of hardware currently in orbit and planned (including quantum communication) each network node will be capable of communications with optical and current radio-frequency methods. This has the added benefit of future proofing optical communications hardware and building industry with the accessibility of an optical ground station network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.