This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.
This paper elaborates on theory and experiment of the formation flight control for the future space-borne tethered interferometers. The nonlinear equations of multi-vehicle tethered spacecraft system are derived by Lagrange equations and decoupling method. The preliminary analysis predicts unstable dynamics depending on the direction of the tether motor. The controllability analysis indicates that both array resizing and spin-up are fully controllable only by the reaction wheels and the tether motor, thereby eliminating the need for thrusters. Linear and nonlinear decentralized control techniques have been implemented into the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations. The nonlinear control using feedback linearization technique performed successfully in both two SPHERES in-line configuration and three triangular configuration while varying the tether length. The relative metrology system, using the ultra sound metrology system and the inertial sensors as well as the decentralized nonlinear estimator, is developed to provide necessary state information.
For complex unmanned docking missions, limited communication bandwidth and delays do not allow ground operators to have immediate access to all real-time state information and hence prevent them from playing an active role in the control loop. Advanced control algorithms are needed to make mission critical decisions to ensure safety of both spacecraft during close proximity maneuvers. This is especially true when unexpected contingencies occur. These algorithms will enable multiple space missions, including servicing of damaged spacecraft and missions to Mars. A key characteristic of spacecraft servicing missions is that the target spacecraft is likely to be freely tumbling due to various mechanical failures or fuel depletion. Very few technical references in the literature can be found on autonomous docking with a freely tumbling target and very few such maneuvers have been attempted. The MIT Space Systems Laboratory (SSL) is currently performing research on the subject. The objective of this research is to develop a control architecture that will enable safe and fuel-efficient docking of a thruster based spacecraft with a freely tumbling target in presence of obstacles and contingencies. The approach is to identify, select and implement state estimation, fault detection, isolation and recovery, optimal path planning and thruster management algorithms that, once properly integrated, can accomplish such a maneuver autonomously. Simulations and demonstrations on the SPHERES testbed developed by the MIT SSL will be executed to assess the performance of different combinations of algorithms. To date, experiments have been carried out at the MIT SSL 2-D Laboratory and at the NASA Marshall Space Flight Center (MSFC) flat floor.
The MIT Space Systems Laboratory and Payload Systems Inc. has developed the SPHERES testbed for NASA and DARPA as a risk-tolerant medium for the development and maturation of spacecraft formation flight and docking algorithms. The testbed, which is designed to operate both onboard the International Space Station and on the ground, provides researchers with a unique long-term, replenishable, and upgradeable platform for the validation of high-risk control and autonomy technologies critical to the operation of distributed spacecraft missions such as the proposed formation flying interferometer version of Terrestrial Planet Finder (TPF). In November 2003, a subset of the key TPF-like maneuvers has been performed onboard NASA's KC-135 microgravity facility, followed by 2-D demonstrations of two and three spacecraft maneuvers at the Marshall Space Flight Center (MSFC) in June 2004. Due to the short experiment duration, only elements of a TPF lost in space maneuver were implemented and validated. The longer experiment time at the MSFC flat-floor facility allows more elaborate maneuvers such as array spin-up/down, array resizing and array rotation be tested but in a less representative environment. The results obtained from these experiments are presented together with the basic estimator and control building blocks used in these experiments.
The MIT Space Systems Laboratory (SSL) has developed a testbed for the testing of formation flight and autonomous docking algorithms in both 1-g and microgravity environments. The SPHERES testbed consists of multiple micro-satellites, or Spheres, which can autonomously control their position and attitude. The testbed can be operated on an air table in a 1-g laboratory environment, in NASA’s KC-135 reduced gravity research aircraft and inside the International Space Station (ISS). SPHERES launch to the ISS is currently manifested for May 19 2004 on Progress 14P. Various types of docking maneuvers, ranging from docking with a cooperative target to docking with a tumbling target, have been developed. The ultimate objective of this research is to integrate the different algorithms into one program that can assess the health status of the target vehicle, plan an optimal docking maneuver while accounting for the existing constraints and finally, execute that maneuver even in the presence of simulated failures. In this paper, results obtained to date on the ground based air table using the initial version of the program will be presented, as well as results obtained from microgravity experiments onboard the KC-135.
KEYWORDS: Space operations, Control systems, Electromagnetism, Magnetism, Interferometers, Matrices, Space telescopes, Satellites, Distance measurement, Planets
The use of propellant to maintain the relative orientation of multiple spacecraft in a sparse aperture telescope such as NASA's Terrestrial Planet Finder (TPF) poses several issues. These include fuel depletion, optical contamination, plume impingement, thermal emission, and vibration excitation. An alternative is to eliminate the need for propellant, except for orbit transfer, and replace it with electromagnetic control. Relative separation, relative attitude, and inertial rotation of the array can all be controlled by creating electromagnetic dipoles on each spacecraft and varying their strengths and orientations. This paper addresses some of the control issues that arise when using electromagnets to control formation geometry.
KEYWORDS: Space operations, Interferometers, Planets, Stars, Signal to noise ratio, Imaging systems, Control systems, Imaging spectroscopy, Spectroscopy, Integrated modeling
As a cornerstone in NASA's Origins program, the primary goal of the Terrestrial Planet Finder (TPF) mission is to directly detect the existence of Earth-like planets around nearby stars. This paper presents a process and a software tool, based on a quantitative systems engineering methodology, to conduct architectural trade studies during the TPF mission conceptual design phase.
Spacecraft trajectories for providing adequate image plane (u-v)coverage for NASA's Deep Space 3 (DS3) mission have been proposed. Due to the high cost of time and fuel in synthesizing images using DS3, this paper addresses time and fuel optimal trajectories. Using the Point Spread Function (PSF) of a densely-filled coverage as the basis for comparison, the locations of a given number of u-v points are selected to best replicate this reference PSF. Subsequently, the minimum time and fuel in a 'Stop and Stare' mode are determined. Finally, these result are compared to several other trajectory options.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.