Temperature is one of the most relevant parameters for the regulation of intracellular processes. Measuring localized subcellular temperature gradients is fundamental for a deeper understanding of cell function, such as the genesis of action potentials, and cell metabolism.
In this work I will review our latest progresses in NV-based thermometry ultimately leading to the first localized temperature increase detection in a firing neuronal network with precision under 0.1 K.
The protocol of quantum reading refers to the quantum enhanced retrieval of information from an optical memory, whose generic cell stores a bit of information in two possible lossy channels. In the following we analyze the case of a particular class of optical receiver, based on photon counting measurement, since they can be particularly simple in view of real applications. We show that a quantum advantage is achievable when a transmitter based on two-mode squeezed vacuum (TMSV) states is combined with a photon counting receiver, and we experimentally confirm it. In this paper, after introducing some theoretical background, we focus on the experimental realisation, describing the data collection and the data analysis in detail.
The search for Planck scale effects is one of holy grains of physics. At Fermilab, a system of two Michelson interferometers (MIs) was built for this purpose: the holometer. This device operates using classical light, and, therefore, its sensitivity is shot-noise limited. In collaboration with the Danish Technical University, we built a proof of principle experiment devoted to experimentally demonstrate how quantum light could improve the holometer sensitivity below the shot noise limit. It is the first time that quantum light is used in a correlated interferometric system. In particular the injection of two single mode squeezed state (one in each interferometer) and of a twin-beam state is considered, and the system performance compared in the two cases. In this proceeding, after a general introduction to the holometer purposes and to our experimental set-up, we present some characterization measurements concerning the quantum light injection.
In this paper we describe the preliminary results obtained at INRiM laboratories toward realizing a couple of correlated power-recycled Michelson interferometers. This system is the first step toward the realization of a quantum-enhanced holometer.
KEYWORDS: Microscopes, Absorption, Image resolution, Real time imaging, Photodetectors, Microscopy, Metrology, Fluctuations and noise, Signal to noise ratio
Quantum technologies promise to overcome by far the limits of the classical schemes. However, the present challenge is to overpass the limits of proof of principle demonstrations to approach real applications. In this paper, we present an experiment which aims to bridge this gap in the field of quantum enhanced imaging. In particular, we realize a sub-shot noise wide field microscope based on spatially multi-mode non-classical photon number correlations in twin beams. The microscope produces real time images of 8000 pixels at full resolution, with noise reduced to the 80% of the shot noise level (for each pixel), hence able to image faint samples at low illumination level. The noise can be further reduced (less than 30% of the shot noise level) turning down the resolution. It demonstrates the best sensitivity per incident photon ever achieved in absorption microscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.