The Vera C. Rubin Observatory is an integrated survey system, currently under construction in Chile, to accomplish a 10-year optical survey of the southern sky. The 8.4-meter Simonyi Survey Telescope mount is nearing completion and undergoing final verification and performance testing. Since the system is optimized for etendue, the telescope mount slewing performance is particularly critical to overall survey efficiency. For example, this high performance mount is required to slew 3.5 degrees, on the sky, and settle in a 4-second period. Here an account of the mount subsystem is presented and selected dynamic performance results from on-site testing are described.
The Vera C. Rubin Observatory is currently under construction on Cerro Pachón, in Chile. It was designed to conduct a 10-year multi-band survey of the southern sky with frequent re-visits (with both an intra- and extra-night cadence) to identify transient and moving objects. The mirror cell assembly was designed in Tucson, Arizona by the Rubin Observatory engineering department, and was tested twice in Tucson. The first testing campaign was performed at CAID industries, where the mirror cell was fabricated, using a steel mirror surrogate that has the same geometry and mass of the glass mirror2,4. The glass mirror is a single monolith that contains both the primary and tertiary mirrors on a single substrate. The testing results confirmed that the mirror support system was performing within the design specifications, and that it was safe to install the glass mirror on the cell. The second test campaign was performed at the Richard F. Caris Mirror Lab of the University of Arizona using the actual glass mirror16. This test campaign was performed under the test tower, which contains a vibration insensitive interferometer to measure mirror figure. This confirmed the mirror support system could achieve proper optical surface figure control for both primary and tertiary mirrors. After successful test campaigns at CAID, and the mirror Lab, the mirror cell assembly was disassembled, packed and shipped to the Rubin Observatory site at the Cerro Pachón summit in Chile. Upon arrival, the mirror cell has been integrated with the mirror surrogate once again to perform the third test campaign that confirmed the system has arrived safe and operational to the summit. This integrated system will be tested on the telescope mount assembly to verify that it still meets it requirements under the effects of variations in gravitational orientation, and dynamic (slewing) loads.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.