Wafer Plane Inspection (WPI) is a novel approach to inspection, developed to enable high inspectability on fragmented
mask features at the optimal defect sensitivity. It builds on well-established high resolution inspection capabilities to
complement existing manufacturing methods. The production of defect-free photomasks is practical today only because
of informed decisions on the impact of defects identified. The defect size, location and its measured printing impact can
dictate that a mask is perfectly good for lithographic purposes. This inspection - verification - repair loop is timeconsuming
and is predicated on the fact that detectable photomask defects do not always resolve or matter on wafer.
This paper will introduce and evaluate an alternative approach that moves the mask inspection to the wafer plane. WPI
uses a high NA inspection of the mask to construct a physical mask model. This mask model is used to create the mask
image in the wafer plane. Finally, a threshold model is applied to enhance sensitivity to printing defects. WPI essentially
eliminates the non-printing inspection stops and relaxes some of the pattern restrictions currently placed on incoming
photomask designs. This paper outlines the WPI technology and explores its application to patterns and substrates
representative of 32nm designs. The implications of deploying Wafer Plane Inspection will be discussed.
Light propagation in optical films grown by pulsed laser deposition was studied numerically. We found that the natural curvature of this films introduced during the growing procedure can lead to an increase of the confinement factor of the optical radiation, which increases the pumping efficiency of the planar waveguide lasers. Moreover, the film curvature does not affect significantly the overlap of the pump and the signal fields inside the active layer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.