A demonstration of an on-chip CO2 gas sensor is reported. It is constructed by the integration of a MEMS-based thermal emitter, a scandium-doped aluminum nitride (ScAlN) based pyroelectric detector, and a sensing channel built on Si substrate. The integrated sensor has a small footprint of 13mm × 3mm (L×W), achieved by the replacement of bulky bench-top mid-IR source and detectors with MEMS-based thermal emitter and ScAlN-based pyroelectric detector, with their footprints occupying 3.15 mm × 3 mm and 3.45 mm × 3 mm, respectively. In addition, the performance of the integrated sensor in detecting CO2 of various concentrations in N2 ambient is also studied. The results indicate that the pyroelectric detector responds linearly to the CO2 concentration. The integration of MEMS emitter, thermal pathway substrate, and pyroelectric detector, realized through CMOS compatible process, shows the potential for massdeployment of gas sensors in environmental sensing networks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.