Near-field scanning optical microscopy was applied to investigate the spatial variations of extended defects and their effects on the optical quality for semi-polar (1-101) and (11-22) InGaN light emitting diodes (LEDs). (1-101) and (11-22) oriented InGaN LEDs emitting at 450-470 nm were grown on patterned Si (001) 7° offcut substrates and m-sapphire substrates by means of nano-epitaxial lateral overgrowth (ELO), respectively. For (1-101) structures, the photoluminescence (PL) at 85 K from the near surface c+ wings was found to be relatively uniform and strong across the sample. However, emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations (TDs) and basal plane stacking faults (BSFs) as revealed from the local PL spectra. In case of (11-22) LED structures, near-field PL intensity correlated with the surface features and the striations along the direction parallel to the c-axis projection exposed facets where the Indium content was higher as deduced from shift in the PL peak energy.
Temperature dependent recombination dynamics in c-plane InGaN light emitting diodes (LEDs) with different well thicknesses, 1.5, 2, and 3 nm, were investigated to determine the active region dimensionality and its effect on the internal quantum efficiencies. It was confirmed for all LEDs that the photoluminescence (PL) transients are governed by radiative recombination at low temperatures while nonradiative recombination dominates at room temperature. At photoexcited carrier densities of 3 – 4.5 x 1016 cm-3 , the room-temperature Shockley-Read-Hall (A) and the bimolecular (B) recombination coefficients (A, B) were deduced to be (9.2x107 s-1, 8.8x10-10 cm3s-1), (8.5x107 s-1, 6.6x10-10 cm3s-1), and (6.5x107 s-1, 1.4x10-10 cm3s-1) for the six period 1.5, 2, and 3 nm well-width LEDs, respectively. From the temperature dependence of the radiative lifetimes, τrad α Tn/2, the dimensionality n of the active region was found to decrease consistently with decreasing well width. The 3 nm wide wells exhibited ~T1.5 dependence, suggesting a three-dimensional nature, whereas the 1.5 nm wells were confirmed to be two-dimensional (~T1) and the 2 nm wells close to being two-dimensional. We demonstrate that a combination of temperature dependent PL and time-resolved PL techniques can be used to evaluate the dimensionality as well as the quantum efficiencies of the LED active regions for a better understanding of the relationship between active-region design and the efficiency limiting processes in InGaN LEDs.
We studied the temperature dependence and the recombination dynamics of the photoluminescence of (1-101)-oriented semi-polar Al0.2Ga0.8N/GaN multiple quantum wells (MQW). The polarized low-temperature PL measurements reveal that radiative recombination exhibit an anisotropic behavior. The PL intensity at room temperature is reduced by one order of magnitude with respect to low temperature. The radiative decay time exhibits a mixed behavior: it is roughly constant between 8K to ranging near 140-150K and then rapidly increases with a slope of 10 ps.K-1. This behavior is indicative of coexistence of localized excitons and free excitons which relative proportion are statistically computed.
The effects of stacking faults (SFs) on optical processes in epitaxially grown semipolar (1122) GaN on m-sapphire substrate have been investigated in detail using steady-state photoluminescence (PL) and time- and polarization-resolved PL. We demonstrate that the carrier recombination dynamics are substantially influenced due to strong carrier localization in the stacking faults. In addition to nonradiative recombination, carrier trapping/detrapping and carrier transfer between the stacking faults and donors are also found to be among the mechanisms affecting the recombination dynamics at different temperatures. PL decay times of both I1-type BSF and 3.31 eV SF (E-type BSF or prismatic stacking fault) do not show temperature dependence up to 80 K while 3.31 eV SF exhibits longer PL decay times (~3 ns) at low temperatures as compared to I1-type BSF (~1 ns), indicative of lower efficiency for radiative recombination. After 80 K, PL decay times decreased by power of ~-1 and ~-2 for 3.31 eV SF and I1-type BSF, respectively. It is obtained from radiative decay times with respect to temperature that the carrier localization becomes higher in I1-type BSF compared to 3.31 eV SF increasing the temperature. I1-type BSF also shows higher PL intensity, which is attributed to larger density, and therefore, larger contribution to recombination dynamics as compared to other type of stacking faults. Polarization-resolved PL measurements also revealed that the degree of polarization for the I1-type BSF (0.30) was twice that for the 3.31 eV SF.
A 5λ-thick hybrid semiconductor/dielectric GaN-based microcavity grown by metal-organic chemical vapor deposition on a c-plane bulk GaN substrate was investigated using angle-resolved photoluminescence and angle-resolved cathodoluminescence techniques at room and low temperature (5.8 K), respectively. The cavity structure consisted of an InGaN multiple quantum well active region emitting at 400 nm and sandwiched between 29.5 pair bottom semiconductor AlN/GaN and 13.5 pair top dielectric SiO2/SiNx distributed Bragg reflectors. The cavity supported strong exciton-photon coupling with a record 75 meV vacuum Rabi splitting energy at 5.8 K. The measured room temperature Rabi splitting energy of 45 meV is still close to the highest Rabi splitting energies reported in literature confirming that the strong coupling regime still persists at room temperature.
Reduced electric field in semipolar (1122) GaN/InGaN heterostructures makes this orientation attractive for high efficiency light emitting diodes. In this work, we investigated indium incorporation in semipolar (1122) GaN grown by metal-organic chemical vapor deposition on planar m-plane sapphire substrates. Indium content in the semipolar material was compared with that in polar c-plane samples grown under the same conditions simultaneously side by side on the same holder. The investigated samples incorporated dual GaN/InGaN/GaN double heterostructures with 3nm wide wells. In order to improve optical quality, both polar and semipolar templates were grown using an in-situ epitaxial lateral overgrowth (ELO) technique. Indium incorporation efficiency was derived from the comparison of PL spectra measured on the semipolar and polar structures at the highest excitation density, which allowed us to minimize the effect of quantum confined Stark effect on the emission wavelength. Our data suggests increased indium content in the semipolar material by up to 3.0%, from 15% In in c- GaN to 18% In in (1122) GaN.
Enhancement of optical and structural quality of semipolar (11‾22) GaN grown by metal-organic chemical vapor deposition on planar m-sapphire substrates was achieved by using an in-situ epitaxial lateral overgrowth (ELO) technique with nanoporous SiNx layers employed as masks. In order to optimize the procedure, the effect of SiNx deposition time was studied by steady-state photoluminescence (PL), and X-ray diffraction. The intensity of room temperature PL for the (11‾22) GaN layers grown under optimized conditions was about three times higher compared to those for the reference samples having the same thickness but no SiNx interlayers. This finding is attributed to the blockage of extended defect propagation toward the surface by the SiNx interlayers as evidenced from the suppression of emissions associated with basal-plane and prismatic stacking faults with regard to the intensity of donor bound excitons (D0X) in lowtemperature PL spectra. In agreement with the optical data, full width at half maximum values of (11‾22) X-ray rocking curves measured for two different in-plane rotational orientations of [1‾100] and [11‾23] reduced from 0.33º and 0.26º for the reference samples to 0.2º and 0.16º for the nano-ELO structures grown under optimized conditions, respectively.
Enhancement of coherent zone folded longitudinal acoustic phonon (ZFLAP) oscillations at terahertz frequencies was demonstrated in InGaN multiple quantum wells (MQWs) by using wavelength degenerate time resolved differential transmission spectroscopy. Screening of the piezoelectric field in InGaN MQWs by photogenerated carriers upon femtosecond pulse excitation gave rise to terahertz ZFLAPs, which were monitored at the Brillouin zone center in the transmission geometry. MQWs composed of 10 pairs InxGa1-xN wells and In0.03Ga0.97N barriers provided coherent phonon frequencies of 0.69-0.80 THz depending on the period of MQWs. Dependences of ZFLAP amplitude on excitation density and wavelength were also investigated. Possibility of achieving phonon cavity, incorporating a MQW placed between two AlN/GaN phonon mirrors designed to exhibit large acoustic gaps at the zone center, was also explored.
KEYWORDS: Gallium nitride, Near field optics, Light emitting diodes, Polarization, Silicon, Point spread functions, Near field scanning optical microscopy, Indium gallium nitride, Luminescence, Excitons
The optical quality of semipolar (1 101)GaN layers was explored by time- and polarization-resolved photoluminescence spectroscopy. High intensity bandedge emission was observed in +c-wing regions of the stripes as a result of better structural quality, while -c-wing regions were found to be of poorer optical quality due to basal plane and prismatic stacking faults (BSFs and PSFs) in addition to a high density of TDs. The high optical quality region formed on the +cwings was evidenced also from the much slower biexponential PL decays (0.22 ns and 1.70 ns) and an order of magnitude smaller amplitude ratio of the fast decay (nonradiative origin) to the slow decay component (radiative origin) compared to the -c-wing regions. In regard to defect-related emission, decay times for the BSF and PSF emission lines at 25 K (~ 0.80 ns and ~ 3.5 ns, respectively) were independent of the excitation density within the range employed (5 – 420 W/cm2), and much longer than that for the donor bound excitons (0.13 ns at 5 W/cm2 and 0.22 ns at 420 W/cm2). It was also found that the emission from BSFs had lower polarization degree (0.22) than that from donor bound excitons (0.35). The diminution of the polarization degree when photogenerated carriers recombine within the BSFs is another indication of the negative effects of stacking faults on the optical quality of the semipolar (1101)GaN. In addition, spatial distribution of defects in semipolar (1101)-oriented InGaN active region layers grown on stripe patterned Si substrates was investigated using near-field scanning optical microscopy. The optical quality of -c- wing regions was found to be worse compared to +c-wing regions due to the presence of higher density of stacking faults and threading dislocations. The emission from the +c-wings was very bright and relatively uniform across the sample, which is indicative of a homogeneous In distribution.
KEYWORDS: Gallium nitride, Near field optics, Metalorganic chemical vapor deposition, Silicon, Near field scanning optical microscopy, Scanning electron microscopy, Point spread functions, Image quality, Excitons, Chemical vapor deposition
Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c− wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.
Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.
The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells grown on m-plane oriented substrate are studied in 8K–300K temperature range. The optical spectra reveal strong in-plane optical anisotropies as predicted by group theory. Polarized time resolved temperature-dependent photoluminescence experiments are performed providing access to the relative contributions of the non-radiative and radiative recombination processes. We deduce the variation of the radiative decay time with temperature in the two polarizations.
Carrier transport in double heterostructure (DH) InGaN light emitting diodes (LEDs) was investigated using photocurrent measurements performed under CW HeCd laser (325 nm wavelength) excitation. The effect of electron injector thicknesses was investigated by monitoring the excitation density and applied bias dependent escape of photogenerated carriers from the active region and through energy band structure and carrier transport simulations using Silvaco Atlas. For quad (4x) 3-nm DH LED structures incorporating staircase electron injectors (SEIs), photocurrent increased with SEI thickness due to reduced effective barrier opposing carrier escape from the active region as confirmed by simulations. The carrier leakage percentile at -3V bias and 280 Wcm-2 optical excitation density increased from 24 % to 55 % when In 0.04Ga0.96N + In0.08Ga0.92N SEI thickness was increased from 4 nm + 4 nm to 30 nm + 30 nm. The increased leakage with thicker SEI correlates with increased carrier overflow under forward bias.
In this work we compare electronic transport performance in HFETs based on single channel (SC) GaN/Al0.30GaN/AlN/GaN (2nm/20nm/1nm/3.5μm) and coupled channel (CC) GaN/Al0.285GaN/AlN/GaN/AlN/GaN (2nm/20nm/1nm/4nm/1nm/3.5μm) structures. The two structures have similar current gain cut-off frequencies (11.6 GHz for SC and 14 GHz for CC for ~ 1μm gate length) however, the maximum drain current, IDmax, is nearly doubled in the CC HFET (0.64 A/mm compared to 0.36 A/mm in SC). HFETs exhibit maximum transconductance (Gmmax) at a bias point close to where maximum fT occurs: VGS =-2.25 V and VDS =12 V and VGS = -2 V and VDS= 15 V for SC and CC HFETs, respectively. Since threshold voltage (Vth) is ~ -3.75 V for both SC and CC structures, devices are able to work at high frequencies with a high gm delivering higher ID. This is in contrast with device performance reported by others where fT is attained at VGS closer to Vth and therefore with lower ID/IDmax ratios and low Gm. Results are consistent in that CC HFET delivers higher IDmax because of the higher electron mobility (μ) and higher carrier density (n) in the channel. As the saturation drain current, IDsat, is attained at electric fields (~40KV/cm) lower than the critical electric field, Ecr , (~ 150KV/cm for GaN ) the higher fT in CC HFETs can be attributed, mainly, to a higher μ, which is in agreement with the Hall measurements. A higher μ in CC HFET is attributed to a shorter hot phonon lifetime.
GaN-based vertical cavity structures containing bottom AlN/GaN DBRs with top dielectric DBRs on freestanding c-GaN and all dielectric DBRs on GaN on c-sapphire were investigated. Epitaxial lateral overgrowth (ELO) technique allowed the use of both top and bottom all dielectric reflector stacks without substrate removal and the fabrication of the active region containing InGaN multiple quantum wells entirely on the nearly defect-free laterally grown wing regions to avoid nonradiative centers caused by extended and point defects. Compared with the cavity containing hybrid-DBRs on freestanding GaN, the cavity with all dielectric DBRs exhibited quality factors up to 1200 at high optical
excitation and an order of magnitude lower stimulated emission threshold density (nearly 5 μJ/cm2). Vertical to lateral growth ratio for ELO could be enhanced up to 5 by increasing the V/III ratio and employment of NH3 modulation, which minimizes the use of dry etching to reduce the cavity thickness and therefore is promising for high quality vertical cavities with all dielectric DBRs.
KEYWORDS: Gallium nitride, Near field scanning optical microscopy, Silicon, Metalorganic chemical vapor deposition, Optical properties, Near field optics, Luminescence, Light emitting diodes, Carrier dynamics, Temperature metrology
Semipolar (11macron01) GaN layers and GaN/InGaN LED structures were grown by metal-organic chemical vapor deposition on patterned (001) Si substrates. Optical properties of the semipolar samples were studied by steady-state and time-resolved photoluminescence (PL). Photon energies and intensities of emission lines from steady-state PL as well as carrier decay times from time-resolved PL were correlated with the distributions of extended defects studied by spatially resolved cathodoluminescence and nearfield scanning optical microscopy. Intensity of donor-bound exciton (DX) emission from both coalesced and non-coalesced semipolar layers is comparable to that of state-of-art c-plane GaN template. To gain insight into the contribution from near surface region and deeper portion of the layers to carrier dynamics in polar c-plane and semipolar (11macron01) GaN, time-resolved PL was measured with two different excitation wavelengths of 267 and 353 nm, which provide different excitation depths of about 50 nm and 100 nm, respectively. Time-resolve PL data indicate that the near-surface layer is relatively free from nonradiative centers (point and/or extended defects), while deeper region of the semipolar film (beyond of ~100 nm in depth) is more defective, giving rise to shorter decay times.
In an effort to investigate the particulars of their stability, In18.5%Al81.5%N/GaN HFETs were subjected to on-state electrical stress for intervals totaling up to 20 hours. The current gain cutoff frequency fT showed a constant increase after each incremental stress, which was consistent with the decreased gate lag and the decreased phase noise. Extraction of small-signal circuit parameters demonstrated that the increase of fT is due to a decrease in the gate-source capacitance (Cgs) and gate-drain capacitance (Cgd) as well as the increased microwave transconductance (gm). All these behaviors are consistent with the diminishing of the gate extension (“virtual gate”) around the gate area.
For high efficiency at high current injection InGaN light emitting diodes (LEDs) necessitate active regions that can mitigate the aggravating electron overflow. Multi double-heterostructures (DHs), 3D active regions separated by low energy barriers, were investigated as optimum solutions for high efficiency as they can accommodate a larger number of states compared to multiple quantum wells (MQWs). However, the number of DH active regions is limited as the material degrades with increasing thickness; therefore, carrier cooling should be partially achieved before the active region using staircase electron injector (SEI) layers. Using electroluminescence (EL) efficiency measurements supported by simulations, active regions and electron injectors were optimized to minimize the electron overflow and the associated efficiency drop at high injection. For a single 3 nm DH LED, the electron overflow was nearly eliminated by increasing the two-step staircase electron injector layer thickness from 4+4 nm to 20+20 nm, whereas the change in SEI thickness had nearly no effect for the DH LEDs with thicker active region. Temperature and excitation density dependent photoluminescence (PL) spectroscopy allowed determination of the material quality and the internal quantum efficiency of device structures with varying active region and SEI thickness.
We report on the effects of metal organic epitaxy grown GaN templates with different surface morphologies,
achieved under different chamber pressures of 200 and 400 Torr, on the electrical properties of GZO. For as-grown GZO
layers with electron concentration above 1020 cm-3 grown on either 200-Torr p-GaN or 400-Torr p-GaN templates, the
electron concentration is temperature-dependent as opposed to temperature-independence for GZO/a-sapphires, which
demonstrates that the underlying GaN layers affect the GZO electrical properties measured by Hall method. By
annealing in nitrogen environment or by inserting a thick ZnO buffer layer, the effects of the underlying GaN layers on
GZO electrical properties can be eliminated paving the way for accurate determination of electrical properties. All three
annealed GZO layers grown on 200-Torr p-GaN, 400-Torr p-GaN, and a-sapphire, exhibited comparable electron
mobilities (~50 cm2/V·s at 15 K and ~41 cm2/V·s at 300 K) and similar temperature dependences while their electron
concentrations are different (5.1×1020, 7.1×1020, and 9.2×1020 cm-3) due to the substrate-caused differences in GZO
growth mode, structure, etc. By means of simulations, ionized impurity scattering was found to be the dominant
scattering mechanism in the range of 15-330 K for GZO when electron concentration is higher than 5×1020 cm-3.
Although other scattering events caused by defects and structures are weaker than the ionized impurity scattering, the
electrical properties could be still slightly improved by finding more optimized growth conditions to eliminate defects
and/or to improve crystal quality.
We apply a number of all-optical time-resolved techniques to study the dynamics of free carriers in InGaN quantum
structures under high excitation regime. We demonstrate that carrier lifetime and diffusion coefficient both exhibit a
substantial dependence on excitation energy fluence: with increasing carrier density, carrier lifetime drops and diffusivity
increases; these effects become more apparent in the samples with higher indium content. We discuss these experimental
facts within a model of diffusion-enhanced recombination, which is the result of strong carrier localization in InGaN.
The latter model suggests that the rate of non-radiative recombination increases with excitation, which can explain the
droop effect in InGaN. We use the ABC rate equation model to fit light induced transient grating (LITG) kinetics and
show that that linear carrier lifetime drops with excitation (i.e. excess carrier density). We do not observe any influence
of Auger recombination term, CN3, up to the maximum carrier density that is limited due to the onset of very fast
stimulated recombination process. To support these conclusions, we present spectrally resolved differential transmission
data revealing different recombination rates of carriers in localized and extended states.
Semipolar (1-101) GaN layers were grown by metal-organic chemical vapor deposition on patterned (001) Si substrates.
The effects of reactor pressure and substrate temperature on optical properties of (1-101) GaN were studied by steadystate
and time-resolved photoluminescence. The optical measurements revealed that the optical quality of (1-101)-
oriented GaN is comparable to that of c-plane GaN film grown on sapphire. Slow decay time constants, representative of
the radiative recombination, for semipolar (1-101)GaN grown at 200 Torr are found to be very long (~1.8 ns), comparable
to those for the state-of-art c-plane GaN templates grown using in situ epitaxial lateral overgrowth through silicon nitride
nano-network. Defect distribution in the GaN stripes was studied by spatially resolved cathodeluminescence
measurements. The c+-wing regions of the GaN stripes were found to be dominated by a (D0,X) emission. Only a thin
slice of emission around 3.42 eV related to basal stacking faults was revealed in c--wing regions.
Degradation of InAlN/GaN based HFETs under stress for four bias conditions, namely, on-state high field
stress (hot phonon, hot electron and self heating effect), off-state high field stress (hot electron effect), onstate
low field stress (self heating effect), and reverse gate bias stress (inverse piezoelectric effect) has been
examined. The degradation is characterized by monitoring electrical properties, such as, drain current
reduction, gate lag, and low frequency noise. On-state high field stress has shown more than 50% reduction
in the drain current and approximately 25-30 dBc/Hz increase in low frequency noise after 25 hours of
stress, while other stress conditions led to much lesser degradation. It is demonstrated that the major
degradation mechanism in InAlN/GaN HFETs is the hot-phonon and hot-electron effect in the realm of
short term effects.
High resolution transmission electron microscopy and aberration-corrected scanning transmission electron
microscopy (STEM) reveal a new void defect in GaN, Si-doped GaN, and InGaN. The voids are pyramid shaped with
symmetric hexagonal {0001} base facets and {10-11} side facets. The pyramid void has a closed or open core dislocation at
the peak of the pyramid, which continues up along the [0001] growth direction. The closed dislocations have a 1/3 11-20
edge dislocation Burgers vector component, consistent with known threading dislocations. The open core dislocations
are hexagonal shaped with pure screw character, {10-10} side facets, varying lateral widths, and varying degrees of
hexagonal symmetry. STEM electron energy loss spectroscopy spectrum imaging revealed a larger C concentration
inside the void and below the void than above the void. We propose that carbon deposition during metal organic
chemical vapor deposition growth acts as a mask, stopping the GaN deposition locally. Subsequent layers of GaN
deposited around the C covered region create the overhanging {10-11} facets, and the meeting of the six {10-11} facets at the
pyramid's peak is not perfect, resulting in a dislocation.
The effect of active layer design on the efficiency of InGaN light emitting diodes (LEDs) with the light emission in blue
(~420 nm) has been studied. Correlation between the internal quantum efficiency (IQE) and relative external quantum
efficiency (EQE) and salient features of structures on c-plane InGaN LEDs which contain multiple quantum wells
(MQWs) of different barrier height (either In0.01Ga0.99N or In0.06Ga0.94N barriers) and thickness (3 nm and 12 nm) as well
as different double heterostructure (DH) designs (3 nm, dual 3 nm, 6 nm, dual 6 nm, 9 nm and 11 nm) with inserted 3
nm In0.06Ga0.94N barrier. Pulsed electroluminescence (EL) and optical excitation power-dependent photoluminescence
(PL) measurements indicated that the thinner and lower In0.06Ga0.94N barriers bode well for high EQE and IQE.
Furthermore, increase of the effective active region thickness by multiple InGaN DH structures (dual, quad and hex)
separated by 3 nm In0.06Ga0.94N barriers is promising at high injection levels. Although increasing the single DH
thickness from 3 to 6 nm improves the peak relative EQE by nearly 3.6 times due to increased density of states and
increased emitting volume, the IQE suffers a nearly 30% loss. Further increase in the DH thickness to 9 and 11 nm
results in a significantly slower rate of increase of EQE with current injection and lower peak EQE values presumably
due to degradation of the InGaN layer. Increasing the number of 3 nm DH active regions with 3 nm In0.06Ga0.94N
barriers improves EQE, while still maintaining high IQE (above 95% at a carrier concentration of 1018 cm-3) and
showing negligible EQE degradation up to 550 A/cm2 due to increased emitting volume and high radiative
recombination coefficients and high IQE.
We have found composition variations along the growth direction within regions of nominally constant indium
composition in InGaN light emitting diode structures grown by metal-organic chemical vapor deposition using atomic
resolution Z-contrast imaging in a scanning transmission electron microscope (STEM). Within 60 nm thick nominally
In0.01Ga0.99N layers, we found periodic enhancements in the indium concentration into 4 bands separated by 11 nm.
Energy dispersive spectroscopy spectrum imaging confirmed that the higher intensity in the high angle annular dark field
(HAADF) Z-contrast STEM images was in fact caused by locally higher indium concentration. We observed no lateral
indium composition fluctuations.
InGaN light emitting diodes (LEDs), which have become key components of the lighting technology owing to
their improved power conversion efficiencies and brightness, still suffer from efficiency degradation at high
injection levels. Experiments showing sizeable impact of the barrier height provided by an electron blocking layer
(EBL) or the electron cooling layer prior to electron injection into the active region strongly suggest that the electron
overflow resulting from ballistic and quasi-ballistic transport is the major cause of efficiency loss with increasing
injection. Our previous report using a first order simple overflow model based on hot electrons and constant LO
phonon scattering rates describes well the experimental observations of electron spillover and the associated
efficiency degradation in both nonpolar m-plane and polar c-plane LEDs with different barrier height EBLs and
electron injection layers. LEDs without EBLs show three to five times lower efficiencies than those with
Al0.15Ga0.85N EBLs due to significant electron overflow to the p-type region in the former. For effective means of
thermalization in the active region within their residence time and possibly longitudinal optical phonon lifetime, the
electrons were cooled prior to their injection via a staircase electron injector, i.e. an InGaN staircase structure with
step-wise increased In composition. The investigated m-plane and c-plane LEDs with incorporation of staircase
electron injector show comparable electroluminescence performance regardless of the status of EBL. This paper
discusses hot electron effects on efficiency loss, means to cool the electrons prior to injection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.