MICADO, the European Extremely Large Telescope first light imager will feature a dedicated high contrast imaging mode specifically designed for observing and characterizing exoplanets and circumstellar disks. Its improved sensitivity and angular resolution, compared to existing instruments will significantly increase our knowledge on these planetary systems. MICADO will include three classical Lyot coronagraphs, one vector phase-apodized pupil plane (vAPP) and two sparse apertures. After rapidly describing the final design of MICADO high contrast mode, we will describe the current state of development of the coronographic components and the testing of the first Lyot coronagraph prototypes.
COSMO (COSmic Monopole Observer) is an experiment aimed at the searching for spectral distortions in the CMB (Cosmic Microwave Background) between 120 and 300 GHz. COSMO will be operated from Concordia Station on the Antarctic plateau. The experiment is based on a cryogenic Martin-Puplett interferometer whose superconductive detectors are KIDs (Kinetic Inductance Detectors). The interferometer produces interferograms proportional to the difference between the sky and an internal reference black body. The sky signal has a fast modulation to compensate for the atmospheric fluctuations. A key requirement of the readout is an ultra-fast rate to track the signal modulation and also for detector diagnostic. The readout architecture is based on an IQ transceiver generating a comb of test tones tuned to each detector. We developed a modular readout based on commercial components for reliability and fast prototyping. We were able to reach and sustain a readout rate higher than 60 kHz for 18 detectors. In this contribution a general description of the architecture, together with the main performances in terms of amplitude and phase noise are given.
Antenna-coupled microwave kinetic inductance detectors are emerging as a compelling solution for the next generation of cosmic microwave background (CMB) experiments, which require focal plane arrays with a substantial increase in the number of detectors and multi-band observation capabilities. We present the design and fabrication of multichroic pixels using this architecture, optimized for B-mode polarization observation. The pixel incorporates an improved dual bowtie slot antenna placed at the second focus of an elliptical lens, covering an octave frequency range from 100 GHz to 300 GHz. We aim to achieve bandwidths exceeding 20% for two CMB-atmospheric transparent subbands at 150 GHz and 220 GHz while maintaining adequate linear polarization sensitivity with a cross-polarization level below −17 dB across the entire range. The captured signal is then passed through a superconducting microstrip low-pass filter to remove excessive colors before being fed into the diplexer, where the two bands are separated. These bands are then coupled to the inductive section of MKIDs, effectively modifying the resonant frequency and quality factor of the corresponding resonators. The demonstration sample is fabricated using five photomask layers, employing niobium and aluminum as the superconducting materials, and is currently undergoing testing.
In pursuit of advancing large array receiver capabilities and enhancing the 16-element Heterodyne Array Receiver Program (HARP) instrument on the James Clerk Maxwell Telescope (JCMT), we have successfully fabricated 230 GHz finline superconductor-insulator-superconductor (SIS) mixers. These mixers are critical for assessing the potential and prospective for the HARP instrument’s upgrade. Unlike the existing HARP’s mixer, we replace the probe antenna with an end-fire unilateral finline as the waveguide to planar circuit transition. This mixer design is expected to operate from about 160–260 GHz (approximately 47% bandwidth), and the mixer chips’ current-voltage (I-V) curves have been characterized, showing promising results with a quality factor (Rsg/Rn) exceeding 9.3. Evaluation of the double-sideband (DSB) receiver noise temperature (Trx) is currently underway. Once successfully characterised, our immediate aim is to scale the mixer to operate at HARP’s frequency range near 345 GHz to achieve similar broad RF bandwidth performance. Ongoing simulations are currently being conducted for the design of the 345 GHz finline mixer. This work marks a crucial step toward enhancing HARP receiver performance with better sensitivity and wider Intermediate Frequency (IF) bandwidth, enabling higher-frequency observations, and expanding the scientific potential of the JCMT and its collaborative partners.
We describe the readout electronics for Kinetic Inductance Detectors (KIDs) that we are developing based on a commercial IQ transceivers from National Instruments and using a Virtex 5 class FPGA. It will be the readout electronics of the COSmic Monopole Observer (COSMO) experiment, a ground based cryogenic Martin-Puplett Interferometer searching for the Cosmic Microwave Background spectral y-distortions. The COSMO readout electronics requires a sampling rate in the range of tens of kHz, due to both a fast modulation of the signal with a spinning optical element and the short time constant of the Kinetic Inductance Detectors (KIDs) used in COSMO. In this contribution we show the capabilities of our readout electronics using Niobium KIDs developed by Paris Observatory for our 5 K cryogenic system. In particular, we demonstrate the capability to detect 23 resonators from frequency sweeps and to readout the state of each resonator with a sampling rate at about 12 kHz.
We report the design of a 230 GHz dual-polarization (2-pol) balanced Superconductor-Insulator-Superconductor (SIS) receiver that can be easily extended for large array applications. We achieve this by integrating all of the required radio frequency (RF) and local oscillator (LO) components on-chip using planar superconducting circuit technology, therefore simplifying the architecture of the receiver block substantially. One major feature of our design is the planar LO injection scheme, which couples the LO with a single on-chip antenna and distributes the LO power via a series of microstrip couplers to the balanced mixers of each polarization of each pixel. In this paper, we describe in detail the design and layout of the individual planar circuit components of our receiver, as well as how they are integrated to form a full receiver. We then conclude the paper with the design of a 2-pixel array demonstrator, illustrating how the balanced SIS mixer and the LO distribution network can be extended to form an even larger array.
Travelling wave parametric amplifiers (TWPAs) made from highly non-linear reactive superconducting thin films have been demonstrated to be a potentially viable quantum-noise-limited amplifier technology for various fundamental physics platforms, including microwave/mm/sub-mm astronomy, dark matter search experiments, neutrino mass experiments, and qubit readout. We present a kinetic inductance TWPA consisting of a patterned titanium nitride film on a sapphire substrate, which comprises a coplanar waveguide (CPW) with a continuous, smoothed periodic loading (PL) structure that modulates the characteristic impedance of the CPW in a double sinusoidal fashion. This double sinusoidal modulation creates much stronger dispersion features than a conventional PL design, which allows for phase matching and pump harmonic suppression over a much shorter transmission length, potentially leading to reduced losses. In this paper, we shall discuss in detail the design of our TWPA and present the predicted gain-bandwidth characteristics from electromagnetic simulations.
Travelling wave parametric amplifiers (TWPAs) made from highly nonlinear reactive superconducting thin films have been demonstrated to be a viable technology for various quantum applications, including fundamental physics experiments such as astronomy and axion dark matter searches, as well as commercial applications like quantum computational and communication systems. In this paper, we present the design of a kinetic inductance TWPA comprising a patterned titanium nitride film that can operate at 0.3K to demonstrate the feasibility of operation closer to 1K temperature, paving the way to achieve even higher bath temperature operation. We discuss in detail the design of our TWPA, along with the predicted gain-bandwidth product and other characteristics. We perform the preliminary experimental investigation of the thin film properties and compare that with the simulated results. We found that there are several discrepancies between the measured and the predicted behaviour of the thin film. We attribute these differences to the fact that the fabricated thin film has a different gap voltage, resistivity and thickness to what we expected. With a new set of estimated parameters, we successfully reproduce the measured transmission profile. We further show that by utilising bridges to ensure equipotential grounds for the CPW lines, we are able to reduce the rippling effect and achieve a higher gain with broader bandwidth. We expect that our TWPA can achieve higher than 20 dB gain from approximately 0–8 GHz.
While radial velocity and transit techniques are efficient to probe exoplanets with short orbits, the study of long-orbit planets requires direct imaging and coronagraphic techniques. However, the coronagraph must deal with planets that are 104 to 1010 fainter than their hosting star at a fraction of arcsecond, requiring efficient coronagraphs at short angular separation. Phase masks proved to be a good solution in monochromatic or limited spectral bandwidth but expansion to broadband requires complex phase achromatization. Solutions use photonic crystals, subwavelength grating or liquid crystal polymers but their manufacturing remains complex. An easier solution is to use photolithography and reactive ion etching and to optimize the azimuthal phase distribution like achieved in the six-level phase mask (SLPM) coronagraph (Hou et al. 2014). We present here the laboratory results of two SLPM coronagraphs enabling high-contrast imaging in wide-band. The SLPM is split in six sectors with three different depths producing three levels of optical path difference and yielding to uniform phase shifts of 0, π or 2π at the specified wavelength. Using six sectors instead of four sectors enables to mitigate the chromatic effects of the SLPM compared to the FQPM (Four-Quadrant Phase Mask) while keeping the manufacturing easy. Following theoretical developments achieved by University of Shanghai and based on our previous experience to fabricate FQPM components, we have manufactured SLPM components by reactive ion etching at Paris Observatory and we have tested it onto the THD2 facility at LESIA. The THD2 bench was built to study and compare high-contrast imaging techniques in the context of exoplanet imaging. The bench allows reducing the starlight below a 10−8 contrast level in visible/near-infrared. In this paper, we show that the SLPM is easy to fabricate at low cost and is easy to implement with a unique focal plane mask and no need of pupil apodization. Detection of a planet can be achieved at small inner working angle down to 1 λ/D. The on-axis attenuation of the best SLPM component reaches 2 × 10−5 at λ = 800 nm and is better than 10−4 in intensity over a 10% spectral bandwidth. Along the diagonal transition, we show that the off-axis transmission is attenuated by less than 3% over a 10% bandwidth and will need to be calibrated. Any etching imperfections can affect the SLPM performance, by lowering the on-axis attenuation and by changing the optimal wavelength. Despite few nanometers of uncertainty for etching the depths, we show that this first component can provide a high-contrast attenuation in laboratory
The goal of a coronagraph is to reduce the flux of a bright object (e.g. a star) in order to distinguish its faint neighborhood (e.g. exoplanets and disks). In this context, we proposed one coronagraph that uses a four quadrant phase mask (FQPM). Since 2000, we fabricated several monochromatic FQPM working in visible and near-infrared light at the Paris Observatory. We have developed systematic procedures for fabrication and characterization of the phase masks. Visual inspections with an optical microscope are performed for every component and a coronagraphic performance measurement based on inclination of the component is done on a dedicated bench that is set up in a clean room. This procedure gives a quick feedback on the quality and performance of the component. Depending on the results, images of the central transition can be recorded with an electron microscope to understand the limitations of the fabrication process. This procedure allowed us to understand the influence of various parameters such as the width of the transitions between the quadrants, the alignment of the transitions or the step depth. Based on these results, we modified the mask design and the fabrication process to improve our success rate to nearly 100% when building a FQPM for any given optimal wavelength in visible or near-infrared. Moreover, we improved the performance of the components, reaching attenuations of more than 20,000 on the central peak in raw images for most coronagraphs. The best of these components are now used on the THD bench, an optical/NIR bench developed for the study of high contrast imaging techniques, reaching 10-8 contrast level routinely.
Direct imaging of exoplanets is very attractive but challenging and specific instruments like Sphere (VLT) or GPI (Gemini) are required to provide contrasts up to 16-17 magnitudes at a fraction of arcsec. To reach higher contrasts and detect fainter exoplanets, more-achromatic coronagraphs and a more-accurate wavefront control are needed. We already demontrated contrasts of ~10-8 at ~4 λ/D at 635nm using a four quadrant phase mask and a self-coherent camera on our THD bench in laboratory. In this paper, we list the different techniques that were tested on the THD bench in monochromatic and polychromatic lights. Then, we present the upgraded version of the THD bench that includes several deformable mirrors for correcting phase and amplitude simultaneously and obtain a field-of-view covering the complete 360 degrees arouns the star with contrasts down to ~10-8 -10-9.
We report on tunable submillimeter-wave radiation sources based on micrometer-sized superconducting tunnel junction
arrays optimized within a bandwidth of 350-520 GHz. The arrays consist of 10, 20 and 40 Superconductor-Insulator-
Superconductor (SIS) parallel-connected Nb/AlOx/Nb junctions embedded in superconducting microstrip lines. A SIS
twin-junction is integrated along with each array to detect output signals. The pumped detector’s I-V characteristic
exhibits clearly photon-assisted quasiparticule steps when the arrays are biased upon corresponding Josephson
resonances ranging from 370 to 520 GHz.
We report on the development of waveguide-based mixers for operation beyond 2 THz. The mixer element is a
superconducting hot-electron bolometer (HEB) fabricated on a silicon-on-insulator (SOI) substrate. Because it is beyond
the capability of conventional machining techniques to produce the fine structures required for the waveguide embedding
circuit for use at such high frequencies, we employ two lithography-based approaches to produce the waveguide circuit:
a metallic micro-plating process akin to 3-D printing and deep reactive ion etching (DRIE) silicon micromachining.
Various mixer configurations have been successfully produced using these approaches. A single-ended mixer produced
by the metal plating technique has been demonstrated with a receiver noise temperature of 970 K (DSB) at a localoscillator
frequency of 2.74 THz. A similar mixer, produced using a silicon-based micro-machining technique, has a
noise temperature of 2000 K (DSB) at 2.56 THz. In another example, we have successfully produced a waveguide RF
hybrid for operation at 2.74 THz. This is a key component in a balanced mixer, a configuration that efficiently utilizes
local oscillator power, which is scarce at these frequencies. In addition to allowing us to extend the frequency of
operation of waveguide-based receivers beyond 2 THz, these technologies we employ here are amenable to the
production of large array receivers, where numerous copies of the same circuit, precisely the same and aligned to each
other, are required.
Observation and analysis of submillimeter-wave radiation
(300GHz-3THz) in astronomy and atmospheric sciences requires
increasingly performant receivers. The most sensitive receivers
working in this range of electromagnetic spectrum use
superconductor-insolator-superconductor (SIS) junctions.
In order to increase the bandwidth and the sensitivity, we are
developing a quantum-noise limited heterodyne receiver
based on several parallel SIS junctions with broad
(larger than 30%) fixed tuned bandwidth. These circuits can be
viewed as passband filters which have been optimized by
varying the spacings between junctions.
We have designed such 5-junction arrays for operation in the
range 480-640 GHz. Fabrication and heterodyne characterization
of these devices has been done. The 1 μm2 junctions current density
ranges from 4 to 13 kA/cm2, using optical lithography and
Nb/Al2Nb5/Nb trilayer sputtering technology. The fabrication
process and yield are presented in this paper, along with
measured performances
We report on the status of the development of a 30% bandwidth tunerless SIS double-sideband mixer for the “Band 1” (480 GHz-630 GHz) channel of the heterodyne instrument (HIFI) of ESA’s Herschel Space Observatory, scheduled for launch in 2007. After exposing the main features of our mixer design, we present the performance achieved by the demonstration mixer, measured via Fourier Transform Spectroscopy and heterodyne Y factor calibrations. We infer from a preliminary mixer analysis that the mixer has very low, quantum-limited noise and low conversion loss. We also report on some pre-qualification tests, as we currently start to manufacture the qualification models and design the last iteration of masks for SIS junction production.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.