We have developed a new method for optical limiting using a system of coupled optical cavities with a PTsymmetric spectrum of reflectionless modes. The optical limiting occurs when the PT symmetry is broken due to the thermo-optic effect in one of the cavities. In our experiment, we used a two-cavity resonator with PT-symmetric spectral degeneracy of reflectionless modes created from alternating layers of cryolite and ZnS. We demonstrated optical limiting by measuring a single 532-nm 6-ns laser pulse. Our experimental results are supported by thermo-optical simulations, which provide deeper insight into the dynamics of the limiting process. Compared to existing limiter designs, our optical limiter offers a customizable limiting threshold, high damage threshold, nanosecond activation time, and broadband laser protection. Additionally, we have shown a method to achieve an even broader transmission spectral bandwidth by implementing this concept in a four-cavity resonator with greater coupling strength using similar materials.
The invention of the random laser has opened a new frontier in optics, providing also the opportunity to explore new possibilities in the field of sensing. Random lasing have been proposed as promising opportunity to extend the potentiality given by optical sensing strategies, in particular in the field of the measurement of diffusive properties. Compared to the other used strategies, random laser-base systems has the advantage to show amplification of the signal by stimulated emission, as well as spectral modification. In particular, a non-invasive type of random laser sensor, that exploits a transparent physical separation between the gain material and the diffusive sample, has been reported. Here we present an improvement of the experimental setup used for such a kind of sensor. By the use of a optical fibers system and a couple of twin sensors, we report an enhancement of the accuracy, stability, reproducibility, as well an measurement method easy to perform, without resorting to complicated numerical or analytic inversion procedures. Since the possibility to perform local direct measurement on diffusive samples, such a “active” method can be a promising strategy in the field of biomedical optics and for non-invasive diagnostic purposes.
The Monte Carlo (MC) method is a gold standard for "solving" the radiative transport equation even in complex geometries and distributions of optical properties. The exact analytical benchmark provided by the invariant total mean path length law spent by light injected with uniform Lambertian illumination within nonabsorbing scattering media is used to verify Monte Carlo codes developed for biomedical optics applications. The correctness of an MC code can be evaluated with a sample t-test. In addition, the invariance of the mean path length ensures that the expected value is known regardless of the complexity of the medium. The accuracy of the estimated mean path length can progressively increase as the number of simulated trajectories increases. The method can be used regardless of the scattering and geometric properties of the medium, as well as in the presence of refractive index mismatch between the medium and the outer region and between different regions of the medium. The proposed method is particularly reliable for detecting inaccuracies in the treatment of finite media boundaries. The results presented in this contribution, obtained with a standard computer, show a verification of our MC code to the sixth decimal place. This method can provide a fundamental tool for verification of Monte Carlo codes in the geometry of interest without resorting to simpler geometries and uniform distribution of the scattering properties.
Usually, in biomedical optics, the average photon fluence rate, evaluated in a subvolume of a propagating medium, is obtained by Monte Carlo simulations by calculating the power deposited by photons absorbed in the subvolume. We propose an alternative method based on evaluating the average path length traveled by all photons injected within the subvolume. Application examples are given. This method also works for a zero absorption coefficient and for a nonconstant spatial distribution of the absorption coefficient within the subvolume. The proposed approach is a re-visitation of a well-known method applied to nuclear and radiation physics. The results obtained show that a potential advantage of the proposed method is that it can improve the convergence of Monte Carlo simulations. Indeed, when calculating the fluence in a region of interest with the proposed method, all photons passing through the region are considered. Whereas with the traditional approach, only absorbed" photons are considered. In the latter case, this can produce a poorer Monte Carlo statistic for the same number of photons launched.
The Monte Carlo method is a gold standard for “solving” the radiative transport equation even in complex geometries and distributions of the optical properties. The exact analytical benchmark provided by the law of the invariant total mean pathlength spent by light injected with uniform Lambertian illumination inside non-absorbing scattering media is used to verify Monte Carlo codes developed for biomedical optics applications. The correctness of an MC code can be assessed with a one-sample t-test. Further, the invariance of the average path length guarantees that the expected value is known regardless of the complexity of the medium. The results obtained show that the accuracy of the estimated average pathlength can be progressively increase as the number of simulated trajectories increases. The method can be applied in total generality versus the scattering and geometrical properties of the medium, as well as in presence of refractive index mismatch between the medium and the external region and between different regions of the medium. The proposed verification method is especially reliable to detect inaccuracies in the treatment of boundaries of finite media. The results presented in this contribution, obtained by a standard computer machine, show a verification of our Monte Carlo code up to the sixth decimal digit. This method can provide a fundamental tool for the verification of Monte Carlo codes in the geometry of interest, without resorting to simpler geometries and uniform distribution of the scattering properties.
Traditionally, in biomedical optics, the photons mean fluence rate assessed in a sub-volume of a propagating medium is obtained with Monte Carlo (MC) simulations by calculating the deposited power by the absorbed photons in the sub-volume. We propose an alternative method based on the assessment of the mean pathlength traveled by all the injected photons inside the sub-volume. Examples of its applications are given. This method also works for nil absorption coefficient and for a non-constant spatial distribution of the absorption coefficient inside the sub-volume. The proposed approach is a re-visitation of a well-known method applied in radiation and nuclear physics. The relation at the basis of the method descends from the ground definitions of quantities employed in radiative transfer. The results obtained show that a potential advantage of the proposed method is that it can improve the convergence of the MC simulations. Indeed, when calculating the fluence in a region of interest with the proposed method all the photons that cross the region are considered. While, with the traditional approach only the “absorbed”photons can contribute to the calculated fluence. In the latter case, this may produce a poorer MC statistic for the same number of launched photons.
The invention of the random laser has opened a new frontier in optics, providing also the opportunity to explore new possibilities in the field of sensing. The research in optical sensors has indeed been largely encouraged by the demand for low-cost and non-invasive new detection strategies. The main advantage in exploiting the physical principle of the random laser in optical sensors is due to the presence of the stimulated emission mechanism, which allows amplification and spectral modification of the signal. We present here a step forward in the exploitation of this optical sensor device by an improved revisitation of a previous experimental setup, both in the instrumentation and in the measurement method, to mitigate the instability of the results due to shot-to-shot pump energy fluctuations. The novelties introduced, the use of optical fibers, a reference sensor, and a peristaltic pump have shown to eliminate optical beam alignment issues and the problems linked to variation in pump energy. The implemented sensor allows easy and rapid change of the sensed medium. These results pave the way for a portable device to directly measure the scattering of liquid samples, without resorting to complicated numerical or analytic inversion procedures of the measured data, provided that a suitable calibration of the system is performed.
Significance: Code verification is an unavoidable step prior to using a Monte Carlo (MC) code. Indeed, in biomedical optics, a widespread verification procedure for MC codes is still missing. Analytical benchmarks that can be easily used for the verification of different MC routines offer an important resource.
Aim: We aim to provide a two-step verification procedure for MC codes enabling the two main tasks of an MC simulator: (1) the generation of photons’ trajectories and (2) the intersections of trajectories with boundaries separating the regions with different optical properties. The proposed method is purely based on elementary analytical benchmarks, therefore, the correctness of an MC code can be assessed with a one-sample t-test.
Approach: The two-step verification is based on the following two analytical benchmarks: (1) the exact analytical formulas for the statistical moments of the spatial coordinates where the scattering events occur in an infinite medium and (2) the exact invariant solutions of the radiative transfer equation for radiance, fluence rate, and mean path length in media subjected to a Lambertian illumination.
Results: We carried out a wide set of comparisons between MC results and the two analytical benchmarks for a wide range of optical properties (from non-scattering to highly scattering media, with different types of scattering functions) in an infinite non-absorbing medium (step 1) and in a non-absorbing slab (step 2). The deviations between MC results and exact analytical values are usually within two standard errors (i.e., t-tests not rejected at a 5% level of significance). The comparisons show that the accuracy of the verification increases with the number of simulated trajectories so that, in principle, an arbitrary accuracy can be obtained.
Conclusions: Given the simplicity of the verification method proposed, we envision that it can be widely used in the field of biomedical optics.
A random laser is an optical system where the light is amplified by stimulated emission along random paths in a disordered medium. In recent years, a new kind of non-invasive sensor based on random lasing has been proposed. The striking point is that a sensor based on random lasing has an emission "fed" by the feedback due to the scattering properties of the medium, making such a system a natural candidate for studying materials with strong disorder. Here, we report the recent advances in the sensor structure and performances.
Optical sensing has been subject to a great interest for the moderate intrusiveness of its operation. The introduction of random lasers in ’90s has opened the door for developing a new kind of optical sensors. In such a source, disorder is introduced within an inverted medium, increasing the lifetime of the radiation without the presence of an optical cavity. The striking point is that the spectral characteristics of the output emission are strongly dependent on the scattering properties of the medium, suggesting new methods to investigate disordered materials. Recently, a novel concept for optical sensing based on the physics of random laser has been reported,1 overcoming the limits due to the alteration of the investigated sample by injecting an active material. Here we present a characterization of such a kind of sensor, suggesting non-invasive and also in-vivo applications.
We present an experimental realization of slow and fast light schemes for a few ns long optical pulses that makes use of incoherent interactions in an atomic medium. The combination of such different schemes allows us to demonstrate that the propagation delay acquired in the slow light stage, can be completely recovered in a fast light one. The use of an incoherent interactions scheme makes the control of the propagation dynamics of light pulses easer to realize. Delays up to 13 ns, in slow light regime, and advances up to 500 ps, in fast light regime, are reported when the stages work individually for a 3 ns long pulse. When both stages are switched-on the fast light stage is able to recover a previously induced delay and even to produce an extra advance, with an overall advance up to 1 ns. Since every optical transmission line needs an amplification system to overcome the unavoidable losses, the results suggest the opportunity and perspective of a proper tailoring of the amplification stage for data timing purposes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.