This paper presents a novel approach to higher-level (2+) information fusion and knowledge representation using
semantic networks composed of coupled spiking neuron nodes. Networks of spiking neurons have been shown to
exhibit synchronization, in which sub-assemblies of nodes become phase locked to one another. This phase locking
reflects the tendency of biological neural systems to produce synchronized neural assemblies, which have been
hypothesized to be involved in feature binding. The approach in this paper embeds spiking neurons in a semantic
network, in which a synchronized sub-assembly of nodes represents a hypothesis about a situation. Likewise, multiple
synchronized assemblies that are out-of-phase with one another represent multiple hypotheses. The initial network is
hand-coded, but additional semantic relationships can be established by associative learning mechanisms. This
approach is demonstrated with a simulated scenario involving the tracking of suspected criminal vehicles between
meeting places in an urban environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.