This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Customized dosimetry for nanoparticle-based PDT requires models in order to adjust parameters of different nature to get an optimal tumor removal. In this work, a predictive model of nanoparticle-based PDT is proposed and analyzed. Dosimetry in nanoparticle-based PDT is going to be influenced by photosensitizer-nanoparticle distribution in the malignant tissue, its influence in the optical radiation distribution and the subsequent photochemical reactions. Nanoparticles are considered as photosensitizer carriers on several types of non-melanoma skin cancer. Shielding effects are taken into account. The results allow to compare the estimated treatment outcome with and without nanoparticles.
Cyanobacteria present the capability of producing oxygen and biomass, from CO2 and light irradiation. Therefore, they could be fundamental for human subsistence in adverse environments, as basic needs of breathing and food would be guaranteed. Cyanobacteria cultivation, as other microorganisms, is carried out in photo-bioreactors. The adequate design of photobioreactors greatly influences elements production throughput. This design includes optical illumination and optical measurement of cyanobacteria growth. In this work an analysis of optical measurement of cyanobacteria growth in a photobioreactor is made. As cyanobacteria are inhomogeneous elements, the influence of light scattering is significant. Several types of cyanobacteria are considered, as long as several spatial profiles and irradiances of the incident light. Depending on cyanobacteria optical properties, optical distribution of transmitted light can be estimated. These results allow an appropriate consideration, in the optical design, of the relationship between detected light and cyanobacteria growth. As a consequence, the most adequate conditions of elements production from cyanobacteria could be estimated.
Although many biomedical applications that involve nanoparticles are being proposed and tested, there is a need to take into account the influence of those nanoparticles on optical radiation propagation. The previously mentioned optical treatment and diagnosis techniques assume a particular optical propagation pattern, which is altered by the addition of nanoparticles. This change depends on the nanoparticle material, shape, size and concentration, among other parameters. In order to try to quantify these changes, in this work several phantoms that include different nanoparticles are analyzed, in order to estimate the influence of nanoparticles in optical propagation. A theoretical model of optical propagation, which takes into account the absorption and scattering changes in the medium, is also considered. Nanoparticles of different sizes from 40 nm to 1 μm are analyzed. Nanoparticle materials of interest in biomedical applications are employed. The results are relevant in diagnosis interpretation of images and treatment outcome evaluation when nanoparticles are present.
The purpose of these techniques is to create an optical beam with uniform distribution of optical intensity on the transmitter output. In order to compare and evaluate the particular shaping techniques, a new Trans- formation Complex Quality (TCQ) parameter was defined. The TCQ parameter indicates the optimal shaping technique and also evaluates the quality of the resulting transformed beam with respect to its resistance towards atmospheric turbulence.
Besides increasing the availability of data links it is necessary to focus on the accuracy and reliability of testing optical links. Research of the data optical links is focused on the transmission of a large amount of data whereas the testing FSO link is designed to achieve maximal resolution and sensitivity thus improving accuracy and repeatability of the atmospheric effects measurement. Given the fact that testing links are located in the measured media, they are themselves influenced by it. Phenomena such as the condensation on transceiver windows (rain, frost) and the deviation of the optical beam path caused by the wind are referred to as non-standard effects. Non-standard effects never occur independently; therefore we must always verify the cross-sensitivity of the testing link.
In the paper we respond to an increasing number of articles dealing with influence of the atmosphere on the link but ignoring the cross-sensitivity of the testing link on other variables than tested. In conclusion, we carry out qualitative and quantitative analysis of self-identified non-standard effects.
Photosensitizer fluorescence emission during photodynamic therapy applied to dermatological diseases
View contact details
No SPIE Account? Create one