Adaptive optics and wavefront control enable advances in the transmission matrix measurement. However, despite its rich information content, the transmission matrix is usually only used to enhance light transmission through scattering media. For the first time, we present an assessment of the health status of retinal tissues using the transmission matrix measured by digital holography. Our data show that transmission matrix analysis can detect pathological changes in the retina and is promising for the development of label-free imaging biomarkers.
The retina is an epithelium composed of different cell layers with unique optical properties and detects light by photoreceptor neurons for visual function. The quest for suitable measurement methods to detect the health status of retinal tissues is ongoing. We study the capability of the optical transmission matrix, which fully describes the transition of a light field propagating through a scattering sample. Despite its rich information content, the transmission matrix is commonly just used for light delivery through scattering media. Digital holography is employed to measure the transmitted light. We demonstrate that singular value decomposition of the transmission matrix allows to discriminate phantom tissues with varying scattering coefficient. We apply these findings to retinal organoid tissues. Application of an inducer of retinal damage in animals, caused cell death and structural changes in human retinal organoids, which resulted in distinct changes in the transmission matrix. Our data indicate that the analysis of the transmis-sion matrix can distinguish pathologic changes of the retina towards the development of imag-ing-based biomarkers. Laser microscopy of retinal organoid samples from human induced plu-ripotent stem cells is a disruptive technology that promises paradigm shifts for biomedicine.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.