The mirror modules composing Athena’s X-ray optics are made with the Silicon Pore Optics (SPO) technology.
SPO is produced as stacks of 38 mirror plates, which are paired to form X-ray Optics Units (XOUs) following a
modified Wolter I geometry. In the current design, a mirror module is composed of two confocal XOUs glued in
between a pair of brackets that freeze the configuration and provide interfaces to the mirror structure. Mirror
modules are assembled at the XPBF2 beamline of PTB at the synchrotron radiation facility BESSY II, using
dedicated jigs. In this paper we present the latest developments regarding the assembly of confocal mirror
modules for Athena with an emphasis on alignment tolerances and gluing accuracy.
Athena, the largest space-based x-ray telescope to be flown by the European Space Agency, uses a new modular technology to assemble its 2.5 m diameter lens. The lens will consist of several hundreds of smaller x-ray lenslets, called mirror modules, which each consist of up to 76 stacked mirror pairs. Those mirror modules are arranged in circles in a large optics structure and will focus x-ray photons with an energy of 0.5 to 10 keV at a distance of 12 m onto the detectors of Athena. The point-spread function (PSF) of the optic shall achieve a half-energy width (HEW) of 5” at an energy of 1 keV, with an effective area of about 1.4 m2, corresponding to several hundred m2 of super-polished mirrors with a roughness of about 0.3 nm and a thickness of down to 110 µm. This paper will present the status of the technology and of the mass production capabilities, show latest performance results and discuss the next steps in the development.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.