KEYWORDS: Holograms, Holography, Microscopy, 3D modeling, Signal to noise ratio, 3D image reconstruction, Stereoscopy, Microscopes, Speckle, Time metrology
Holographic microscopy encodes the 3D information of a sample into a single hologram. However, holographic images are in general inferior to bright-field microscopy images in terms of contrast and signal-to-noise ratio, due to twin-image artifacts, speckle and out-of-plane interference. The contrast and noise problem of holography can be mitigated using iterative algorithms, but at the cost of additional measurements and time. Here, we present a deep-learning-based cross-modality imaging method to reconstruct a single hologram into volumetric images of a sample with bright-field contrast and SNR, merging the snapshot 3D imaging capability of holography with the image quality of bright-field microscopy.
KEYWORDS: Digital holography, Holography, Microscopy, 3D image reconstruction, Digital imaging, Holograms, Digital recording, Speckle, 3D image processing, Wave propagation interference
We demonstrate a deep learning-based hologram reconstruction method that achieves bright-field microscopy image contrast in digital holographic microscopy (DHM), which we termed as “bright-field holography”. In bright-field holography, a generative adversarial network was trained to transform a complex-valued DHM reconstruction (obtained without phase-retrieval) into an equivalent image captured by a high-NA bright-field microscope, corresponding to the same sample plane. As a proof-of-concept, we demonstrated snapshot imaging of pollen samples distributed in 3D, digitally matching the contrast and shallow depth-of-field advantages of bright-field microscopy; this enabled us to digitally image a sample volume using bright-field holography without any physical axial scanning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.