KEYWORDS: Hot carriers, Nanowires, Solar cells, Semiconductors, Photovoltaics, Diseases and disorders, Crystals, Beam diameter, Time resolved spectroscopy, Spectroscopes
III-V nanowire structures have shown promising results in mitigating hot carrier thermalization rates suitable for hot carrier solar cell applications. This effect is attributed to the spatial confinement of charged particles and the adjustment of material properties in these nanostructures. Furthermore, by designing vertically standing nanowires, it is possible to improve photo-absorption by increasing internal surface reflection. Investigating the properties of hot carriers in core-shell InGaAs nanowires has shown evidence for a strong diameter dependence of these nanostructures. Determining the origin of this effect provides valuable information for the development of efficient hot carrier absorbers for 3rd generation solar cells.
KEYWORDS: Monte Carlo methods, Hot carriers, Phonons, Quantum systems, Solar cells, Quantum cascade lasers, Laser scattering, Data modeling, Ultrafast phenomena, Thermal modeling
Type-II InAs/AlAsSb multi-quantum well (MQW) structures have seen usage in both quantum-cascade lasers and avalanche photodiodes. There has been recent interest in investigating this material system for next-generation photovoltaic applications, specifically hot carrier solar cells, due to the type-II offset spatially separating electrons and holes and the predicted high LO phonon lifetime. In order to successfully realize a hot carrier solar cell, the ultrafast relaxation process needs to be well understood. To investigate these effects, we simulated a MQW structure under both pulsed and continuous wave laser excitation with an Ensemble Monte Carlo (EMC) solver self-consistently coupled to a multi-valley non-parabolic Schrödinger/Poisson solver. The EMC includes intervalley scattering, carrier-carrier scattering, and nonequilibrium phonon effects.The EMC simulations show that the inhibited cooling is primarily due to a build up of LO phonons. We demonstrate good agreement with temperatures extracted via photoluminesce techniques.
KEYWORDS: Solar cells, Photovoltaics, Solar energy, Scattering, Virtual point source, Satellites, Quantum wells, Phonons, Indium gallium arsenide, Energy efficiency
Hot Carrier Solar Cells (HCSCs) are a proposed next-generation photovoltaic technology for overcoming the single-gap efficiency limit. Here, our latest work in developing protocols for effective hot carrier extraction and field aided scattering within the framework of valley photovoltaics (VP) will be presented. A study of various absorber/selective barrier material combinations provides insight into current bottlenecks towards the realization of a VP HCSC, and how these might be circumvented using several complementary experimental techniques.
KEYWORDS: Phonons, Monte Carlo methods, Ultrafast phenomena, Indium arsenide, Quantum wells, Solar cells, Scattering, Quantum experiments, Systems modeling, Quantum simulation
The ultrashort time scale carrier dynamics of photoexcited carriers in semiconductor nanostructures is critical in controlling energy loss processes, which is necessary to realize advanced concept photovoltaic devices based on concepts such as hot carrier extraction. Here, we compare ensemble Monte Carlo (EMC) simulation of carrier dynamics in semiconductor multi-quantum well (MQW) structures with continuous wave photoluminescence studies performed in type I and type II InGaAs quantum wells. We compare the effects of including nonequilibrium phonon effects as well as the inclusion of intervalley scattering in the EMC simulations on the simulated carrier distribution functions in comparison with the PL studies. EMC analysis shows that reduced carrier cooling is predominantly due to nonequilibrium LO phonons. For type II systems, additional effects due to real space transfer and delocalization of the photoexcited holes occur.
Semiconductor nanowires (NWs) have shown robust hot carrier effects due to their small dimensions. Here, we study the cooling mechanisms of hot electrons in the time domain via transient absorption spectroscopy. Probe energies below the bandgap are used to determine the evolution of the carrier effective mass while probe energies above the bandgap track the conduction band occupation. From excitation intensity dependent measurements, we confirm that electron-hole interactions are a major cooling channel at large carrier density, given the high ratio of mh/me of InAs. Our experiments indicate that this cooling channel is amplified in passivated core-shell NWs. We associate this effect with spatial carrier separation caused by Fermi-level pinning in unpassivated NWs. In core-shell NWs, bands are considerably more flat which increases radiative recombination and electron-hole scattering with the latter cooling the hot electron population. Our results highlight the advantages of carrier separation if high carrier densities are to be used for hot phonon bottlenecks.
This work describes the relative contribution of intervalley scattering and phonon bottleneck effects in type-II InAs/AlAsSb quantum well solar cells. Moreover, recent predictions also suggest that altering the QW to barrier thickness ratio in these structures enables control of the phonon scattering rate, and therefore hot carrier relaxation may be inhibited by design. Experimental analysis of these predictions is presented in solar cell architectures, as well as, their effects upon both the optical and electrical performance of these devices.
In photovoltaic devices, thermalization of hot carriers generated by high energy photons is one of the major loss mechanisms, which limits the power conversion efficiency of solar cells. Hot carrier solar cells are proposed to increase the efficiency of this technology by suppressing phonon-mediated thermalization channels and extracting hot carriers isentropically. Therefore, designing hot carrier absorbers, which can inhibit electron-phonon interactions and provide conditions for the re-absorption of the energy of non-equilibrium phonons by (hot) carriers, is of significant importance in such devices. As a result, it is essential to understand hot carrier relaxation mechanisms via phonon-mediated pathways in the system. In this work, the properties of photo-generated hot carriers in an InGaAs multi-quantum well structure are studied via steady-state photoluminescence spectroscopy at various lattice temperatures and excitation powers. It is observed that by considering the contribution of thermalized power above the absorber band edge, it is possible to evaluate hot carrier thermalization mechanisms via determining the thermalization coefficient of the sample. It is seen that at lower lattice temperatures, the temperature difference between hot carriers and the lattice reduces, which is consistent with the increase of the quasi-Fermi level splitting for a given thermalized power at lower lattice temperatures. Finally, the spectral linewidth broadening of multiple optical transitions in the QW structure as a function of the thermalized power is investigated.
Hot-carrier solar cells could overcome the Shockley-Queisser limit by having electrons and holes at a higher temperature than the lattice. To generate these hot carriers under concentrated sunlight, the thermalization rate should be as low as possible. Our objective in this presentation is to quantify the influence of different thermalization mechanisms. We determine the carrier temperature in ultrathin GaAs absorbers using continuous-wave photoluminescence and identify distinct surface and volume thermalization contributions. We explain the origin of these contributions using theoretical models involving non-equilibrium LO phonon populations and thermionic emission. We implement these mechanisms in detailed balance calculations for further understanding.
Photoluminescence spectroscopy is a powerful technique to investigate the properties of photo-generated hot carriers in materials in steady state conditions. Hot carrier temperature can be determined via fitting the emitted PL spectrum with the generalized Planck’s law. However, this analysis is not trivial, especially for nanostructured materials, such as quantum wells, with a modified density of states due to quantum confinement effects. Here, we present comprehensively different methods to determine carrier temperature via fitting the emitted PL spectrum with the generalized Planck’s law and discuss under what conditions it is possible to simplify the analysis.
In order to accurately characterize the photoluminescence from an InAs/AlAsSb multi-quantum well hot carrier absorber, the band structure is generated with an 8 band k·p model utilizing the Naval Research Laboratory’s MultiBands® software tool. The simulated spectra for transitions between the lowest energy electron sub-band and the four lowest hole sub-bands are computed from the optical matrix elements and the calculated band structure. In depth temperature dependent simulations for absorption and photogenerated recombination of electron-hole carriers are compared with the experimental spectra. There is close agreement between simulated and observed spectra in particular, the room temperature e1-hh1 simulated transition energy of 805 meV nearly matches the 798 meV transition energy of the experimental photoluminescence spectra. Also, the expected energy separations between local maxima (p1-p2) in the simulated/experimental spectra have a difference of just 2 meV. The model has a valence band offset of 63 meV which is in general agreement with photoluminescence feature that suggests a valence band offset of 70 meV.
To analyze the ‘hot’ carriers, the photoluminescence spectra is evaluated with three different methods, a linear fit to the high energy portion of the spectra and two methods which utilize either an equilibrium or non-equilibrium generalized Planck relation to fit the whole spectrum. The non-equilibrium fit enables individual carrier temperatures for both holes and electrons. This results in two very different carrier temperatures for holes and electrons: where the hole temperature, Th, is nearly equal to the lattice temperature, TL; while, the electron temperature, Te, is ‘hot’.
Control of electronic, optical and thermal properties in semiconductor nanostructures allows for design of electronic, optoelectronic and thermoelectric devices. For some applications, a prolonged excited-state carrier lifetime is desired without carrier thermalization or recombination. Engineering charge separation and indirect recombination pathways leads to hot electrons dominating the device response. In this work, transient absorption of terhertz (THz) probe pulses measure the recombination dynamics of photoexcited carriers in a type-II InAs/InAsSb multiple quantum well (MQW). THz measures free-photocarrier absorption and lattice expansions within the MQW as a result of phonons or polarons. The carriers are photoexcited close to the fundamental excited-state resonance of the MQW for a range of lattice temperatures between 5 K and 300. Excitation above the MQW resonance at low temperature shows fast (~15 ps), intermediate (~150 ps) and slow (~1500 ps) recombination times. As the lattice temperature is increased, fast recombination subsides and the slower recombination components grow. This switch of recombination components is almost conservative and is agreement with photoluminescence results suggesting that radiative recombination occurs strongly for the entire temperature range. Fast recombination results from direct recombination within the MQW, as conduction electrons combine with localized holes arising from alloy fluctuations that are frozen in low temperature. At higher temperatures, recombination processes are indirect, between the well’s conduction electrons and barrier’s valence holes. The identical temperature dependence of slower recombination contributions indicated this to be a two-step mechanism that is also reliant on the electron-phonon coupling. Type-II MQWs can enhance this recombination times to prolong hot carriers for optoelectronic devices.
Hot carrier solar cells (HCSCs) have been proposed as potential systems to increase the conversion efficiency of single gap solar cells beyond the Shockley-Queisser limit. Despite a great deal of recent progress in HCSCs, designing an effective and efficient hot carrier absorber remains challenging. To evaluate the efficiency of any proposed absorber accurate determination of the carrier temperature is required. This can be non-trivial, particularly in the quantum wells (QW) where state-filling effects can complicate the simple extraction of carrier temperature from photoluminescence (PL) spectra. Specifically, the PL may be distorted if there are other linewidth broadening mechanisms prevalent in addition to non-equilibrium carriers. These may include; in addition to state filling, the effects of phonons and system inhomogeneities, all of which serve to perturb the PL linewidth. In this study, an InGaAsP QW with a type-II band alignment is investigated using continuous wave power and temperature dependent PL to evaluate the effects of broadening on the extraction of the true carrier temperature in the system [1]. Since there is a relatively small energy separation between the ground and first excited state transitions in the QW studied, state filling effects can be controlled and their contribution to the linewidth evaluated, using various conditions and combinations of excitation power and lattice temperature. The role of phonons is also presented, and supported within the framework of a theoretical model that includes the various phononic processes and their temperature dependent contribution to the PL.
This work is supported by the National Science Foundation Grant ECCS #1610062
[1] Esmaielpour, Hamidreza, Vincent R. Whiteside, Louise C. Hirst, Joseph G. Tischler, Chase T. Ellis, Matthew P. Lumb, David V. Forbes, Robert J. Walters, and Ian R. Sellers. Progress in Photovoltaics: Research and Applications (2017).
Hot carrier solar cells (HCSCs) have been proposed as devices, which can increase the conversion efficiency of a single junction solar cell above the Shockley-Queisser limit. For practical implementation of such systems, solar cells operating with efficient hot carrier extraction must circumvent two fundamental challenges: 1. Find an absorber material in which hot carriers are sustained either via inhibiting or circumventing phonon relaxation pathways; 2. Implement energy selective contacts in which only a narrow range of energy within the hot carrier distribution is extracted; thereby, reducing cooling losses in the contacts.
Here, type-II InAs/AlAs0.16Sb0.84 quantum-wells are investigated as a candidate system for hot carrier absorbers. Continuous wave power and temperature dependent photoluminescence measurements are presented that indicate: a transition in the dominant hot carrier relaxation process from conventional phonon-mediated carrier relaxation − below 90 K − to a regime where inhibited radiative recombination dominates the hot carrier relaxation − at higher temperatures1. The reduction in the PL efficiency is strongly coupled to an increase in the hot carrier temperature extracted from the measurements. This behavior is attributed to a build-up of electrons in the QWs, which appears to inhibit electron-phonon relaxation2.
InAs/AlAs0.84Sb0.14 quantum wells (QWs) are investigated as a potential system for applications in hot carrier solar cells. Temperature and power dependent photoluminescence (PL) measurements show evidence of carrier localization. Evidence of for the presence of hot carriers is provided through the broadening of the high-energy tail in PL with increasing excitation power. Moreover, with increasing temperature, the stability of the hot carriers appears to improve despite the increased contribution of phonons at elevated temperatures. This is attributed to the reduced radiative recombination rate driven by the type-II band offset inherent in this system; which is suggested to result in inhibited hot carrier relaxation through electron pile-up in the conduction band
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.