KEYWORDS: Data modeling, Vector spaces, Data analysis, Systems modeling, Mining, Military intelligence, Algorithm development, Data communications, Detection and tracking algorithms, Computing systems
At present, the analysis technology based on intelligent big data can realize the full collection of massive information, the in-depth mining of data relevance and intelligent analysis, and the assistance of upper-level application command decision-making. Many countries have evolved advanced intelligent data analysis technology as a strategic means. The status of "data-driven command and decision-making" is increasingly emerging. This paper constructs a user interest model based on hierarchical vector space, uses the TF-IDF classification algorithm to mine the user interest model, quickly and accurately obtains the required basic data, dynamic information and the latest intelligence, tracks the frontiers of science and technology, sorts out the development context, and grasps the key of the problem. It is the key to analyze the competitive landscape and development trend, battlefield simulation and planning analysis, to find breakthrough points, so as to occupy a dominant position in the war.
We investigate the three-coupled Hirota system, which is applied to model the long distance communication and ultrafast signal routing systems governing the propagation of light pulses. With the aid of the Darboux dressing transformation, composite rogue wave solutions are derived. Spatial–temporal structures, including the four-petaled structure for the three-coupled Hirota system, are exhibited. We find that the four-petaled rogue waves occur in two of the three components, whereas the eye-shaped rogue wave occurs in the other one. The composite rogue waves can split up into two or three single rogue waves. The corresponding conditions for the occurrence of such phenomena are discussed and presented. We find that the relative position of every single rogue wave is influenced by the ratios of certain parameters. Besides, the linear instability analysis is performed, and our results agree with those from the baseband modulation instability theory.
Efforts have been put into investigating a variable-coefficient coherently coupled nonlinear Schrödinger system with the alternate signs of nonlinearities, describing the propagation of the waves in the nonlinear birefringent optical fiber. Via the Lax pair, Darboux transformation for the system is derived. Then, we derive the vector one- and two-soliton solutions. Figures are displayed to help us study the properties of the vector solitons: with the strength of the four-wave mixing terms γ(t) as a constant, the vector soliton propagates with the unvarying velocity and amplitude; with γ(t) being a time-dependent function, amplitude and velocity of the vector soliton keep varying during the propagation; bell- and M-shaped solitons can both be observed in q2 mode, while we just observe the bell-shaped soliton in q1 mode, where q1 and q2 are the two slowly varying envelopes of the propagating waves; head-on and overtaking interactions between the vector two solitons are both presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.