SCALES (Slicer Combined with Array of Lenslets for Exoplanet Spectroscopy) is the next-generation, diffraction-limited, thermal infrared, fully cryogenic, coronagraphic exoplanet spectrograph and imager for W.M. Keck Observatory. SCALES is fed by the Keck II Adaptive Optics bench. Both modes use common fore-optics to simplify the optical design and have individual detectors, which are JWST flight spares. The imager mode operates from 1 to 5 microns with selectable narrow- and broadband filters over a field of view 12.3 arcseconds on a side, and the integral field spectrograph mode operates from 2 to 5 microns with both low and mid spectral resolutions (R∼ 100 to R∼ 7500) over a field of view 2.15 arcseconds on a side. The diamond-turned aluminum optics, most of which are already delivered, with the rest being fabricated, provide low distortion, low wavefront error, and high throughput for all modes. The slicing unit, located behind the lenslet array, allows SCALES to reach heretofore unheard-of spatially-resolved spectral resolution for exoplanet and disc observations from the ground with a coronagraphic integral field spectrograph. The SCALES consortium includes UC Observatories, CalTech, W.M. Keck Observatory, the Indian Institute of Astrophysics, and the University of Durham, with over 40 science team members. We report on the overall design and project status during its ongoing fabrication phase, which started in early 2023.
A next-generation instrument named, Slicer Combined with Array of Lenslets for Exoplanet Spectroscopy (SCALES), is being planned for the W. M. Keck Observatory. SCALES will have an integral field spectrograph (IFS) and a diffraction-limited imaging channel to discover and spectrally characterize the directly imaged exoplanets. Operating at thermal infrared wavelengths (1-5 μm, and a goal of 0.6-5 μm), the imaging channel of the SCALES is designed to cover a 12′′ × 12′′ field of view with low distortions and high throughput. Apart from expanding the mid-infrared science cases and providing a potential upgrade/alternative for the NIRC2, the H2RG detector of the imaging channel can take high-resolution images of the pupil to aid the alignment process. Further, the imaging camera would also assist in small field acquisition for the IFS arm. In this work, we present the optomechanical design of the imager and evaluate its capabilities and performances.
We present the design of SCALES (Slicer Combined with Array of Lenslets for Exoplanet Spectroscopy) a new 2-5 micron coronagraphic integral field spectrograph under construction for Keck Observatory. SCALES enables low-resolution (R∼50) spectroscopy, as well as medium-resolution (R∼4,000) spectroscopy with the goal of discovering and characterizing cold exoplanets that are brightest in the thermal infrared. Additionally, SCALES has a 12x12” field-of-view imager that will be used for general adaptive optics science at Keck. We present SCALES’s specifications, its science case, its overall design, and simulations of its expected performance. Additionally, we present progress on procuring, fabricating and testing long lead-time components.
We present the current design of WFOS, a wide-field UV/optical (0.31-1.0 µm) imaging spectrograph planned for first-light on the TMT International Observatory 30 m telescope. WFOS is optimized for high sensitivity across the entire optical waveband for low-to-moderate resolution (R ∼ 1500-5000) long-slit and multi-slit spectroscopy of very faint targets over a contiguous field of view of 8′ .3×3 ′ .0 at the f/15 Nasmyth focus of TMT. A key design goal for WFOS is stability and repeatability in all observing modes, made possible by its gravity-invariant opto-mechanical structure, with a vertical rotation axis and all reconfigurable components moving only in planes defined by tiered optical benches parallel to the Nasmyth platform. WFOS’s optics include a linear ADC correcting a 9′ diameter field, including both the science FoV and 4 patrolling acquisition, guiding, and wavefront sensing camera systems; a novel 2-mirror reflective collimator allowing the science FoV to be centered on the telescope optical axis; a dichroic beamsplitter dividing the collimated beam into 2 wavelength-optimized spectrometer channels (blue: 0.31-0.56 µm; red: 0.54-1.04 µm); selectable transmissive dispersers (VPH and/or VBG) with remotely configurable grating tilt (angle of incidence) and camera articulation that enable optimization of diffraction efficiency and wavelength coverage in each channel; all-refractive, wavelength-optimized f/2 spectrograph cameras, and UV/blue and red-optimized detector systems. The predicted instrumental through put of WFOS for spectroscopy averages > 56% over the full 0.31-1 µm range, from the ADC to the detector. When combined with the 30 m TMT aperture, WFOS will realize a factor of ∼20 gain in sensitivity compared to the current state of the art on 8-10 m-class telescopes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.