KEYWORDS: Absorption, Silicon, Solar cells, Thin film solar cells, Reflectivity, Nanostructures, Thin films, Silicon solar cells, Silicon films, Crystals
The crystalline silicon (c-Si) solar cells with light-trapping structures can enhance light absorption within the semiconductor absorber layer, especially in thin-film crystalline silicon (c-Si) solar cells. Here we demonstrate that a dome surface light-trapping scheme for c-Si thin films, fabricated via laser interference lithography and chemical wet etching process, significantly enhances the light absorption within the c-Si layer. In this paper, we demonstrate its good antireflection ability and light trapping performance. As a result, an overall reflection down to 5.35% in the spectrum range of 400-1000nm wavelength was achieved, which is 7.8% lower than inverted pyramid without additional nitride coatings. To quantitatively evaluate the light trapping performance of the textures, the enhancement factor in the dome case is 45%, while for the pyramid texture the AE factors is only around 39.7%. In addition, the absorbed photocurrent density is 14.38 mA/cm2 for a 2 μm silicon absorber layer at an incidence angle of 0°, which is 1.32 mA/ cm2 higher than inverted pyramids. The proposed structure has the potential to play a key role in thin film solar cells.
KEYWORDS: Silicon, Nanostructures, Absorption, Reflectivity, Solar cells, Silicon films, Thin film solar cells, Silicon solar cells, Diffraction gratings, Nanolithography
Enhancing the light absorption in ultrathin-film silicon solar cells is important for improving efficiency and reducing cost. In this paper, we report a highly effecient cosine periodic nanostructure as light trapping texture. The design and fabrication as well as measurement of cosine nanotextures were presented. The optimized structure yields an average reflectance of 7.07% at an equivalent silicon thickness of 10μm, much better than planar and random pyramid structures. The measurements demonstrate that the absorptions in ultrathin film solar cells are very close to the Yablonovitch limit for the entire solar spectrum and insensitive to the angle of the light. This approach is applicable to various thicknesses and promising in future glass-based thin film solar cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.