Recent developments of compliant mechanisms built by additive manufacturing confirm their potential for highprecision applications in harsh environments. Several projects are presented, from simple flexure pivots to complex 3D compliant mechanisms designs, to show the advantages and challenges of the design, manufacturing and testing of such systems. Focus is put on the specific design methodology, the integration of electrical functions, the guiding and lifetime performance results to highlight the potential for future high-precision applications such as high-precision, cryogenic or space.
First, the redesign of simple flexure blades and crossed-blade pivots has been performed. The guiding performances have been compared to simulations. Then, more complex architectures of compliant mechanisms have been designed, manufactured and tested. For example, the European Space Agency (ESA) project Compliant Mechanisms based on Additive Manufacturing (COMAM) and the European H2020 project Prototype for Ultra Large Structure Assembly Robot (PULSAR). This project validates the positioning of tiles integrated on 3D printed flexible pivots and gimbals with a repeatability better than 1 μm. ESA selected CSEM for a new project, the development of a new compliant mechanism with a rotary to linear motion transformation. It is presented here with a novel 3D printed monolithic architecture made of stainless steel.
Based on a new concept to build flexible structures by metallic 3D printing that has been developed at CSEM, several compliant mechanisms have been redesigned for Additive Manufacturing (AM). In addition to the new geometric possibilities offered by AM, the needs for machining and assembly after printing are drastically reduced. Support structures under flexure blades are thus minimized and the overall process becomes more streamlined. Moreover, this idea allows us to advantageously design and produce monolithic cross blade flexure pivots with interlocked flexures. Thanks to this concept, CSEM is now developing and testing new architectures of Compliant Mechanisms based on Additive Manufacturing (COMAM) for the European Space Agency (ESA) in the frame of a GSTP research project.
The use of Additive Manufacturing (AM) processes for space and terrestrial applications is a constantly growing topic of interest from the main actors in the industry. In the perspective of its future developments in the space field and for terrestrial applications, CSEM tackled the challenge of producing compliant structures based on SLM (Selective Laser Melting). In this framework, high performance stainless steel flexures with thickness below 380 micron offering bending fatigue resistance above 15 million cycles under realistic load cases were produced. On the other hand topology optimization software and specific design rules are applied to produce optimized structural parts and monolithic compliant structures. The second part of this paper describes the successful redesign of electrical SlipRings Assemblies (SRA) rotors intended for space applications. This project was run jointly with RUAG Space Switzerland, based on their expertise in the field of space grade SRAs and thanks to the know-how developed by CSEM in the field of AM-based mechanical (re)design. The novel architecture based on the combination of additive manufacturing, casting and remachining enables a significant reduction of the manufacturing and assembly costs and risks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.