We have proposed a new application of an AWG for a compact planar spectroscopic sensor to meet both conditions for miniaturization and high-wavelength resolution in the sub-nanometer order. A liquid sample under test is poured into a groove (optical path length, 70μm: groove depth, 110μm) in the first slab region of the AWG. A preliminary experiment was carried out using water solution of sodium acetate with the fabricated near-infrared AWG sensor. Concentration of the sodium acetate solute could be determined with the average accuracy of ±0.25 wt%. As the next step of AWG-based sensor, we designed and fabricated a compact spectroscopic sensor using an AWG with an insertion loss of 4dB in the visible wavelength. For improving the sensitivity of visible AWG spectroscopic sensor, the optimal design of a groove for the liquid sample was carried out in consideration of the refractive index and transmittance of the chlorophyll a and b as various environmental indicators. We succeeded in discriminating chlorophyll solutions using the AWG sensor. And we obtained a transmittance difference of 1.4dB which is two times higher than that in the conventional scheme (0.7dB) by absorbency change of 1.0 (optical path: 1.0mm). From these theoretical and experimental investigations using a visible AWG, a compact AWG-based spectroscopic sensor has been confirmed to be effective in acquiring body information in bio-medical fields.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.