KEYWORDS: Signal to noise ratio, Data modeling, Telecommunications, Signal processing, Education and training, Denoising, Deep learning, Tunable filters, Feature extraction, Interference (communication)
The scarcity and finite nature of the wireless spectrum drives technology development for spectrum utilization. With the increased complexity of the radio-access environment and susceptibility to interference disruption, challenges exist which demand advanced interference suppression techniques. Recently, the advance of artificial intelligence (AI) promotes technology for data-driven modeling of complicated relationships, which provides numerous tools and techniques for signal processing and analysis. This paper develops a deep learning-based radio signal interference suppression method by leveraging the adaptive features and Convolutional Neural Network (CNN) based Denoising autoencoder (DAE). By simulating the communication system with stochastic channel effects (AWGN channel), the proposed Suppression of Interference DEA (S-IDEA) method is validated using the original signals and the corrupted signals through channel effects. The results show that S-IDEA can effectively perform interference suppression from AWGN channel at different SNR levels and achieve excellent SNR improvement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.