Photoacoustic (PA) imaging has become one of the promising biomedical imaging technologies in the past decade, thanks to its advantages of structural, functional, imaging capabilities and seamless integration with conventional ultrasound imaging. Endoscopic photoacoustic and ultrasound (ePAUS) is the combination of PA imaging technology and endoscopic ultrasound (EUS). In the design of the ePAUS, it is ideal to align the optical beam of the laser and the acoustic beam of the transducer on the same axis to achieve high spatial resolution and long imaging range. Existing ePAUS uses a ring transducer or a beam combiner to obtain a coaxial or rather an off-axis arrangement. However, the ring transducer has a problem in that the diameter and acoustic side lobes are large, and the beam combiner has a disadvantage in that the structure is complicated and the acoustic loss due to multiple acoustic reflections is large. Our approach to solving this problem is the development of ePAUS based on a miniaturized transparent ultrasonic transducer (TUT). In this study, lead-magnesium- niobate lead-titanate and Indium Tin Oxide-based ultra-small TUT was fabricated, and the performance of center frequency of 28.1 MHz and bandwidth of 51.5% was obtained. Thereafter, quasi-focus was used by combining a multimode optical fiber and a gradient index lens, and coaxial alignment was achieved by arranging the optical axis perpendicular to the optically transparent TUT. This results in high spatial resolution and long imaging distances, and the imaging performance of the probe is demonstrated by imaging the rectum and vagina of the rat in vivo.
To evaluate the utility of PA in imaging the GI tract in large animals, we conducted a feasibility study using the porcine gastric wall ex vivo. We used fresh pig stomachs within hours of sacrifice and successfully acquired multispectral images of the vasculature of the porcine gastric wall layer ex vivo. Imaging proceeded with samples of the entire stomach layer, including the mucosa, submucosa, muscularis externa, and serosa. It was possible to acquire the vascular signal up to 1.9 mm depth from the mucosal surface, which could cover the entire mucosa and submucosa.
Ocular chemical damage may induce limbal vessel ischemia and neovascularization, but the pathophysiology of the disease is not completely known. To observe changes in blood vessels after alkaline burn, we monitored the anterior segment and choroidal vasculature using a photoacoustic microscope (OR-PAM). We were able to observe not only the iris blood vessels but also the choroidal vessels under the sclera, which were difficult to be observed with conventional photographs. After alkali burning, we observed neovascularization and limbal ischemia and successfully tracked changes in vasculature during the 7-day healing process. We also used the RANdom SAmple Consensus (RANSAC) method to segment the abnormally generated blood vessels in the cornea by detecting the eyeball surface and successfully visualize the distance from each PA signal to the center of the eye. We believe that photoacoustic imaging has an important potential to reveal the pathophysiology of limb ischemia and neovascularization.
Photoacoustic microscopy (PAM) provides high resolution and large penetration depth by utilizing the high optical sensitivity and low scattering of ultrasound. Hybrid PAM systems can be classified into two categories: opticalresolution photoacoustic microscopy (OR-PAM) and acoustic-resolution photoacoustic microscopy (AR-PAM). ORPAM provides a very high lateral resolution with a strong optical focus, but the penetration depth is limited to one optical transport mean free path. AR-PAM provides a relatively greater penetration depth using diffused light in biological tissues. The resolution of AR-PAM is determined by its ultrasonic parameters. In this study, we performed an in vivo testing of a switchable OR-/AR-PAM system. In this system, two modes can be switched by changing its collimator lens and optical fiber. The lateral resolution of OR-PAM was measured using a resolution test target, and the full width at half maximum (FWHM) of the edge spread function was 2.5 μm. To calculate the lateral resolution of ARPAM, a 6-μm-diameter carbon fiber was used, and the FWHM of the line spread function was 80.2 μm. We successfully demonstrated the multiscale imaging capability of the switchable OR-/AR-PAM system by visualizing microvascular networks in mouse ears, brain, legs, skin, and eyes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.