The National Ignition Facility (NIF) is one of the highest fluence neutron sources provided by the nuclear fusion of deuterium and tritium nuclei. One of the resultant products is 14.1 MeV neutrons which provide key information to the conditions in which they were formed. The degree of polar and azimuthal symmetry of the neutron flux is a key metric for the performance of the capsule, thus a spatially-resolved measurement of the neutron distribution is critical. Implementing a suite of 48 lanthanum bromide detectors with zirconium activation samples around the target chamber has been developed to measure the neutron distribution. The system provides near real-time time estimates of the neutron fluence distribution. It is designed to operate over six orders of magnitude of neutron yield, providing overall yield estimates precise to 2%. The system is designed to operate continuously through the NIF shot cycles, accommodating high data rates. We will describe the nuclear counting system, data acquisition and archiving, analysis, and yield distribution results for some NIF high yield shots. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-CONF-736439
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.