In next generation space and ground-based instrumentation for Earth and Universe Observation, new instrument concepts include often non planar gratings. Their realization is complex and costly. We propose a new technology for designing and realizing convex blazed gratings for high throughput spectrographs. For this purpose, the requirements are driven by a Digital-Micromirror-Device-based (DMD) MOS instrument we are developing, called BATMAN. The two-arm instrument is providing in parallel imaging and spectroscopic capabilities. The objects/field selector is a 2048 x 1080 micromirrors DMD, placed at the focal plane of the telescope; it is used as a programmable multi-slit mask at the entrance of the spectrograph. The compact Offner-type spectrograph design contains a low density convex grating to disperse light. For optimization of the spectrograph efficiency, this convex grating must be blazed. A blazed reflective grating has been designed with a period of 3300 nm and a blaze angle of 5.04°, and fabricated into convex substrates with 225 mm radius of curvature and a footprint diameter of 63.5 mm. The blaze is optimized for the center wavelength of 580 nm within the spectral range of 400 – 800 nm. Such grating has been fabricated by using lithography, angular Ar ion etching, transfer of the blazed grating from a flat surface onto a convex substrate with a flexible stamp, etched into the substrate by RIE etching. and finally coated with a silver-based layer. With a final 7° blaze angle over the whole surface, efficiency close to 90% on the 1st diffraction order at 700nm has been obtained, measured on BATMAN spectroscopic arm. An optimized device with the exact required blaze angle would reach the same efficiency and be centered on the mid of 400-800nm wavelength band: its realization is on-going. The wavefront error of the diffracted beam will also be optimized. The grating brings a significant contribution in the total amount of straylight at instrument level. Their straylight level remains a critical issue, and its reduction by specific and controlled implementation of improvements in manufacturing process is a challenge to tackle. Straylight measurement has been done and shows a BRDF cosθ values of 10-8 sr-1 on the optical surface and 10-7 sr-1 on the structured features. This new type of non-planar reflective gratings will be the key component for future high throughput spectrographs in space missions
In next generation space and ground-based instrumentation for Earth and Universe Observation, new instrument concepts include often non planar gratings. Their realization is complex and costly. We propose a new technology for designing and realizing convex blazed gratings for high throughput spectrographs. For this purpose, the requirements are driven by a Digital-Micromirror-Device-based (DMD) MOS instrument we are developing, called BATMAN. The two-arm instrument is providing in parallel imaging and spectroscopic capabilities. The objects/field selector is a 2048 x 1080 micromirrors DMD, placed at the focal plane of the telescope; it is used as a programmable multi-slit mask at the entrance of the spectrograph. The compact Offner-type spectrograph design contains a low density convex grating to disperse light. For optimization of the spectrograph efficiency, this convex grating must be blazed. A blazed reflective grating has been designed with a period of 3300 nm and a blaze angle of 5.04°, and fabricated into convex substrates with 225 mm radius of curvature and a footprint diameter of 63.5 mm. The blaze is optimized for the center wavelength of 580 nm within the spectral range of 400 – 800 nm. Such grating has been fabricated by using lithography, angular Ar ion etching, transfer of the blazed grating from a flat surface onto a convex substrate with a flexible stamp, etched into the substrate by RIE etching. and finally coated with a silver-based layer. With a final 7° blaze angle over the whole surface, efficiency close to 90% on the 1st diffraction order at 700nm has been obtained, measured on BATMAN spectroscopic arm. An optimized device with the exact required blaze angle would reach the same efficiency and be centered on the mid of 400-800nm wavelength band: its realization is on-going. The wavefront error of the diffracted beam will also be optimized. The grating brings a significant contribution in the total amount of straylight at instrument level. Their straylight level remains a critical issue, and its reduction by specific and controlled implementation of improvements in manufacturing process is a challenge to tackle. Straylight measurement has been done and shows a BRDF cosq values of 10-8 sr-1 on the optical surface and 10-7 sr-1 on the structured features. This new type of non-planar reflective gratings will be the key component for future high throughput spectrographs in space missions.
In next generation space instrumentation for Earth and Universe Observation, new instrument concepts include often non planar gratings. Their realization is complex and costly. We propose a new technology for designing and realizing convex blazed gratings for high throughput spectrographs. For this purpose, our requirements are driven by a Digital-Micromirror-Device-based (DMD) MOS instrument to be mounted on the Telescopio Nazionale Galileo (TNG) and called BATMAN. The two-arm instrument is providing in parallel imaging and spectroscopic capabilities. The objects/field selector is a 2048 x 1080 micromirrors DMD, placed at the focal plane of the telescope; it is used as a programmable multi-slit mask at the entrance of the spectrograph. The compact Offner-type spectrograph design contains a low density convex grating to disperse light. For optimization of the spectrograph efficiency, this convex grating must be blazed. A blazed reflective grating has been designed with a period of 3300 nm and a blaze angle of 5.04°, and fabricated into convex substrates with 225 mm radius of curvature and a footprint diameter of 63.5 mm. The blaze is optimized for the center wavelength of 580 nm within the spectral range of 400 – 800 nm. Such gratings have been fabricated and coated with a silver-based layer, with a final 7° blaze angle over the whole surface. Efficiency close to 90% on the 1st diffraction order at 700nm has been obtained, measured on BATMAN spectroscopic arm. Detailed mapping of the blazed grating showed a very good period uniformity with up to 0.5% deviation. Grating depth and blaze angle have higher deviation, up to 7%. An optimized device with the exact required blaze angle would reach the same efficiency and be centered on the mid of 400-800nm wavelength band: its realization is on-going. The grating brings a significant contribution in the total amount of straylight at instrument level. Their straylight level remains a critical issue, and its reduction by specific and controlled implementation of improvements in manufacturing process is a challenge to tackle. Preliminary straylight measurement has been done and shows a lowest straylight level below 10-2 sr-1 between the diffraction orders. This new type of non-planar reflective gratings will be the key component for future high throughput spectrographs in space missions.
Monitoring the concentration of greenhouse gases from space is an important need. It can be achieved via a precise analysis of the chemical gaseous species (CO2, CH4, CO, etc.) signature in the spectrum of the reflected sunlight. The MICROCARB project aims to reach a very high quality measurement from on board a small volume Microsat platform, in 4 different spectral bands (O2 spectral band, 2 CO2 spectral bands and a CH4 spectral band), in order to locate and characterize the CO2 sinks and sources and to have a better understanding of the carbon cycle. But this is a very tricky measurement especially for the CO2 monitoring as its concentration in the atmosphere is about 380ppm and we need to measure it with accuracy better than +/− 1ppm. Another presentation is fully dedicated to the MICROCARB instrument design (see [1]).
The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy.
The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies.
EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required.
This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.
Ion Plating deposition technology is investigated for the manufacturing of durable metal-dielectric light absorbers that are compliant with space requirements. Coatings are manufactured using hafnium (Hf) and silica (SiO2) for layer materials so that the deposition chamber can still be used without any modification for the manufacturing of standard dielectric coatings. Both monochromatic and broad band light absorbers are studied
The SIFTI (Static Infrared Fourier Transform Interferometer) instrument aims at supporting an important part in a mission for atmospheric pollution sounding from space, by providing high spectral resolution and high Signal to Noise Ratio spectra of the atmosphere. They will allow to resolve tropospheric profiles of ozone (03) and carbon monoxide (C0), especially down to the planetary boundary layer (PBL), an altitude region of very high interest, though poorly monitored to date, for air quality and pollution monitoring. The retrieved profile of ozone, resp. C0, will contain 5 to 7, resp. 2.5 to 4, independent pieces of information.
The French space agency CNES (Centre National d'Etudes Spatiales) has proposed and is studying an instrument concept for SIFTI based on a static interferometer, where the needed optical path are generated by a pair of crossed staircase fixed mirrors (replacing the moving reflector of dynamic Fourier transform interferometers like IASI or MIPAS). With the SIFTI design, a very high spectral resolution (~0.1 cm-1 apodised) is achieved in a very compact optical setup, allowing a large throughput, hence a high SNR. The measurements are performed in the 9.5 μm band for 03 and in the 4.6 μm band for C0.
The science return of the sounder can be further increased if an "intelligent pointing" process is implemented. This consists in combining the TIR sounder with a companion TIR imager, providing information on the cloud coverage in the next observed scene. 0nboard, real-time analysis of the IR image is used to command the sounder staring mirror to cloud free areas, which will maximize the probability for probing down to the surface. After the first part of the phase A, the architecture of SIFTI was studied as a trade-off between performance and resource budget. We review the main architecture and functional choices, and their advantages. The preliminary instrument concept is then presented in its main aspects and in terms of main subsystem functions.
The preliminary budgets of mass, volume, size and power are also evaluated. Eventually the science performances are estimated, at instrument level and at mission level, and are compared to the specifications. To finish, the ways forward are discussed.
The purpose of the PHARAO project is to develop a new atomic clock generation in space. This clock takes advantage of the very low atomic velocities obtained by laser cooling techniques and the microgravity environment.
Designing the PHARAO optical bench, which provides all the laser tools for the atomic manipulations, is a difficult task. In this paper we will give a global overview of the optical bench in term of functions, interfaces and performances. After establishing the optical parameters, which have an impact on the atomic clock performance, we present the model and software, which are used for the design and analysis of the optical system, taking into account the Gaussian laser beams. Some critical functions have been experimented and characterized to prove the model’s accuracy.
D. Holleville, N. Dimarcq, F. Rigaud, M. Saccoccio, J. Berton, J. Loesel, C. Chappaz, M. De Labachelerie, J. Valentin, S. Bonnefont, P. Arguel, F. Lozes, F.-J. Vermersch, M. Krakowski
In this proceeding we present a set of studies which are in progress in different labs and industrials. The aim of this project is to study the possibilities to design a very compact and reliable laser cooling bench for space and inboard applications.
Measuring the concentration of greenhouse gases from space is a current challenge. This measurement is achieved via a precise analysis of the signature of chemical gaseous species (CO2, CH4, CO, etc.) in the spectrum of the reflected sunlight. First at all, two families of spectrometers have been studied for the MicroCarb mission. The first family is based on the phenomena of interference between two radiation waves (Michelson Interferometer). The second family is based on the use of dispersive optical components. The second family has been selected for the forthcoming studies in the MicroCarb project. These instruments must have high radiometric and spectral resolutions, in narrow spectral bands, in order to discriminate between absorption lines from various atmospheric chemical species, and to quantify their concentration. This is the case, for example, for the instrument onboard the OCO-2 satellite (NASA/JPL).
Our analysis has led us to define a new instrumental concept, based on a dispersive grating spectrometer, with the aim of providing the same accuracy level as the OCO-2, but with a more compact design for accommodation on the Myriade Evolution microsatellite class. This compact design approach will allow us to offer a moderate-cost solution to fulfil mission objectives. Two other studies based on dispersive grating are in progress by CNES prime contractors (ASTRIUM and THALES ALENIA SPACE).
A summary of the main specifications of this design will be described, in particular the approach with the so-called “merit function”. After a description of such a space instrument, which uses a specific grating component, a preliminary assessment of performances will be presented, including the theoretical calculations and formula. A breadboard implementation of this specific grating has allowed us to show the practicality of this concept and its capabilities. Some results of this breadboard will be described. In addition, an instrument simulator is being developed to validate the performances of this concept. A grating component prototype has been built, and the specifications, together with the expected performances, will be described, in particular the polarisation ratio. Some elements about detectors will be also given regarding their suitability for the mission. This preliminary design is encouraging and shows that such a spectrometer may be compatible with a microsatellite platform (low mass, low power and compact design). Some prospects of improvements will also be considered.
The MicroCarb mission objective is to better understand the carbon cycle and predict its evolution. For that purpose MicroCarb is designed to measure the carbon dioxide (CO2) mixing ratio column within 1 ppm (a measurement precision of ~0.3%) from a space observatory in low Earth orbit (LEO) so as to locate and characterise the CO2 sinks and sources.
Measuring the concentration of greenhouse gases from space is a topical challenge. They are measured via a precise
analysis of the signature of chemical gaseous species (CO2, CH4, CO, etc.) in the spectrum of the Earth's atmosphere.
Two types of spectrometer are commonly used. The first is based on the interference between two radiation waves. The
Infrared Atmospheric Sounding Interferometer (IASI) aboard the METOP satellite is a good example of a fullyoperational
instrument of this kind. The second is based on the use of dispersive optical components. These instruments
must have high radiometric and spectral resolutions in narrow spectral bands to be able to discriminate absorption lines
from various atmospheric chemical species and to quantify their concentration. This is the case, for example, of the
instrument aboard NASA's Orbiting Carbon Observatory (OCO).
Our analysis led us to define a new instrument concept, based on a dispersive grating spectrometer, offering similar
performance in a more compact and therefore less expensive instrument.
After describing this instrument, which uses a specific grating component, a preliminary assessment of performances
will be presented, including the theoretical calculations and formulae. A mock-up version of this specific grating
demonstrated the feasibility of this concept and its capabilities. This preliminary design is encouraging and shows that
such a spectrometer may be compatible with a microsatellite bus. Some prospects for improvement are also considered.
Linearly variable filters, also called wedge filters are special optical interference filters with a shift of the spectral
characteristics along one axis of the filter. These optical components have the huge advantage of allowing simple and
small volume spectroimager designs. But they also have drawbacks such as their sensitivity to the instrument design (F number, distance between filter and detector), and to the stray light, especially stray light between the detector and the
filter. And performances of such spectro-imagers are difficult to model because of the angle dependence of the filter
response (as every interference coating show) and because of the spatial dependence of wedge filters spectral response.
These variations make purely geometric stray light calculation unusable because the stray light spectrum can be very
different from the nominal beam spectrum, and because of the mixing between imagery and spectrum aspects. A MatLab
code has thus been developed to be able to take into account a non uniform filter with both spectral and imaging aspects.
The purpose of this study was, using this code, to evaluate the achievable performances of a spectro imager using a
wedge filter, and to quantify the sensitivity of these performances with respect to instrument design.
New types of sounders dedicated to selected species could be used on small satellites to monitor atmospheric chemistry
with simpler instruments. A new kind of Fourier transform spectrometer has been patented by CNES a few years ago.
Based on a static configuration, two projects are being studied at CNES with laboratory breadboards. One is dedicated to
CO2 concentration monitoring in near infrared. The other one works in thermal infrared to study CO and O3 atmospheric
profiles. MoLI breadboard, with a new highly integrated interferometric core, will be used for a long time measurement
of CO2 concentration. MOPI is another breadboard under development to transpose this concept in thermal infrared
during the SIFTI phase A study. These new generation spectrometers consist in a Michelson interferometer with
staircase mirrors assembled by molecular adhesion. They are adapted to narrow spectra sounding from space and could
lead to totally static and highly stabilized instruments.
KEYWORDS: CCD image sensors, Charge-coupled devices, Optical filters, Sensors, Linear filtering, Prototyping, Interfaces, Stray light, Calibration, Signal to noise ratio
The PLEIADES-HR Earth Observing system combines a high resolution panchromatic channel (0.7 m at nadir) and a multispectral channel allowing a 2.8 m resolution. This paper presents the main characteristics of the sensor equipped with filters for the multispectral channel. A long quadrilinear CCD sensor has been coupled to four long stripe filters. The CCD device provides four lines of 1500 pixels with 52 microns pitch. Each line is associated to a long stripe filter and allows to cover spectral bands from blue to near infra red spectrum. Performances of this sub-assembly are analyzed. Pixel response non-uniformity and relative spectral response have been measured and compared to individual performances of the CCD and the filters. Impacts of instrument optical interfaces on these parameters are included in this analysis. Residual spatial noise performances related to spectral response dispersion are presented.
In order to improve their mechanic and climatic properties, we studied the manufacturing of metal-dielectric light absorbers using an Ion Plating Process. The choice of the materials, Hf for the metal and SiO2 for the dielectric, allows us of to use the deposition plant for either metal dielectric or all dielectric HfO2-SiO2 coatings without any change.
After an index characterization of metallic films, we manufactured monochromatic and broad-band coatings. These coatings have been qualified for space environment.
EADS SODERN is developing a compact highly stable near infrared laser dedicated to a space cold atom clock (PHARAO program supported by the CNES). The laser is based on an extended cavity diode laser (ECDL). We will present the design, preliminary performances and the environment behaviour of this ECDL. The ECDL is spectrally tuned with an intra-cavity Fabry-Perot filter. It emits 30mW laser power at a wavelength of 852nm with a line-width around 100kHz. The laser frequency is servo-locked on a saturated absorption line of a cesium vapour. It provides a relative frequency accuracy of 3x10-9 and a frequency noise spectral density lower than 104Hz2/Hz in the range 100Hz to 1kHz. An acousto-optic modulator enables a fast and accurate tuning of the laser frequency, over a 80MHz range, with a rising time of 200GHz/s. According to the results of the mock-up, the flight model under development is expected to be the most accurate and stable laser for space. Beyond the intended application of space-based cold atom clock, such a stabilized laser could also be a key element for future on-board instruments such as space interferometers or space LIDAR, for which a highly stable optical frequency standard is required.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.