KEYWORDS: Antennas, Design, Signal processing, Clocks, Phased arrays, Analog to digital converters, Digital signal processing, Electromagnetic coupling, Field programmable gate arrays
The Low-Frequency Array, or LOFAR, is the world's largest low-frequency radio telescope consisting of over 100 000 antenna elements spread across more than 50 stations throughout Europe. LOFAR2.0 is an upgrade of LOFAR which will significantly improve its sensitivity and overcome several limitations encountered during the last 10 years of operation. The digital beamformers form the core of each LOFAR station. They are called antenna processing sub-racks (APS), where all antenna signals are digitized and digitally processed to form beams on the sky. These beamformers have stringent performance requirements, such as high linearity due to strong radio-frequency interference, good timing for high beamformer efficiency, and very low common-noise and cross-talk to be sky-noise limited over long integration times. The designs of the new LOFAR2.0 beamformer are presented, showing how a balance was struck between performance and cost enabling the production of high volumes, easy installation and maintenance in the field. The antenna processing subrack consists of low-noise receiver units (RCU) which digitise about a hundred RF signals, a clock and control board (APSCT) to distribute the sampling clock and control the digitisers, a power generation board (APSPU), UniBoard2s where FPGAs perform the beamforming, and a midplane that connects all the boards together while also shielding the sensitive receivers. The APS therefore has boards ranging from high-speed, high-density digital processing devices and high-current power converters to low-noise RF electronics. It has hundreds of devices to power, cool, control and monitor and hundreds of gigabits of data which need to be transferred between boards. The first LOFAR station has been upgraded with new beamformers and the first results will be presented. This demonstrates the new capabilities LOFAR2.0 will have with the new beamformers.
KEYWORDS: Receivers, Antennas, Finite element methods, Radio over Fiber, Wavelength division multiplexing, Temperature metrology, Optical fibers, Radio optics, Polarization, Transmitters
The signal reception chain is an essential element for achieving the square kilometer array-low (SKA-low) system requirements in terms of high sensitivity and dynamic range. The balance between gain, linearity, and low power consumption, as well as the cost, are fundamental parameters that influence the selection of the most suitable technology for SKA-low. Further factors, such as low self-generated radio frequency (RF) interference, high reliability, robustness under extreme environment, and last but not least, the distance between the antennas and the acquisition systems, have impacts on the selection for both architecture and receiver system design. The selected technology for the SKA-low RF signal transportation is RF-over-fiber systems, where the preamplified RF signal picked up by the antennas is carried via analogue modulation over optical fiber. The rationales behind the selection are reported, along with descriptions on the development of the receiver prototypes. The prototypes were deployed and installed on the demonstrator arrays at the selected SKA-low site in Western Australian. Particular attention has been put on the thermal characterization of the receiver system under the actual operating temperature on site, especially when both transmitting part and the optical medium are subjected to external ambient temperature variations. Performance issues encountered in the demonstrator arrays are also discussed along with some proposals for future activities.
Square Kilometer Array (SKA)-Low is the radio telescope operating in the lowest frequency band of the SKA, from 50 up to 350 MHz. It consists of 512 stations, each composed of 256 dual-polarization log-periodic antennas for a total of 262,144 independent signal paths. The low-frequency aperture array (LFAA) is the portion of the SKA-Low telescope including the antennas and the related electronics. Signal processing is hosted in a temperature controlled and shielded facility: the central processing facility (CPF), for all the core stations, or remote processing facilities (RPF), for stations in the array arms, to limit the maximum fiber length. Such a geographically distributed and interconnected radio telescope, spanning ∼65 km in diameter, requires that frequency and timing reference signals are distributed to the processing facilities with high stability and precision to ensure the required system performances. We present the realization of the clock and pulse per second distribution network inside the LFAA signal processing cabinet where subracks containing signal acquisition boards are housed. We describe the different parts of the chain, and we report on the total jitter introduced by this structure.
Giulia Macario, Giuseppe Pupillo, Gianni Bernardi, Pietro Bolli, Paola Di Ninni, Giovanni Comoretto, Andrea Mattana, Jader Monari, Federico Perini, Marco Schiaffino, Marcin Sokolowski, Randall Wayth, Jess Broderick, Mark Waterson, Maria Grazia Labate, Riccardo Chiello, Alessio Magro, Tom Booler, Andrew McPhail, Dave Minchin, Raunaq Bhushan
The low frequency component of the Square Kilometre Array (SKA1-Low) will be an aperture phased array located at the Murchison Radio-astronomy Observatory (MRO) site in Western Australia. It will be composed of 512 stations, each consisting of 256 log-periodic dual-polarized antennas, and will operate in the low frequency range (50 to 350 MHz) of the SKA bandwidth. The Aperture Array Verification System 2 (AAVS2), operational since late 2019, is the last full-size engineering prototype station deployed at the MRO site before the start of the SKA1-Low construction phase. The aim of this paper is to characterize the station performance through commissioning observations at six different frequencies (55, 70, 110, 160, 230, and 320 MHz) collected during its first year of activities. We describe the calibration procedure, present the resulting all-sky images and their analysis, and discuss the station calibratability and system stability. Using the difference imaging method, we also derive estimates of the SKA1-Low sensitivity for the same frequencies and compare them with those obtained through electromagnetic simulations across the entire telescope bandwidth, finding good agreement (within 13%). Moreover, our estimates exceed the SKA1-Low requirements at all considered frequencies by up to a factor of ∼2.3. Our results are very promising and allow for an initial validation of the AAVS2 prototype station performance, which is an important step toward the coming SKA1-Low telescope construction and science.
We present the Engineering Development Array 2, which is one of two instruments built as a second generation prototype station for the future Square Kilometre Low-Frequency Array. The array is comprised of 256 dual-polarization dipole antennas that can work as a phased array or as a standalone interferometer. We describe the design of the array and the details of design changes from previous generation instruments, as well as the motivation for the changes. Using the array as an imaging interferometer, we measure the sensitivity of the array at five frequencies ranging from 70 to 320 MHz.
The SKA LOW telescope is an interferometer composed of 512 stations. Each station consists of 256 electronically steered antennas. The Low Frequency Aperture Array is the portion of the SKA-LOW telescope including the antennas and the related electronics. The LFAA signal processing chain amplifies, transports and combines the signals from the antennas composing each station into a coherent beam. Beamforming is performed in the frequency domain, with stringent requirements on bandpass flatness, linearity in a RFI contaminated spectral region, and allowed signal degradation. We adopted an architecture including a highly optimized oversampled polyphase filterbank for channelization, and a distributed network beamformer. The system has been validated as part of the Aperture Array Verification System, a single station operating at the SKA site in Western Australia.
The Square Kilometre Array telescope at low-frequency (SKA-Low) will be a phased array telescope supporting a wide range of science cases covering the frequency band 50 - 350 MHz, while at the same time asking for high sensitivity and excellent characteristics. These extremely challenging requirements resulted in a design using 512 groups of 256 log periodic dual polarized antennas each (where each group is called “station”), for a total of 131072 antennas. The 512 stations are randomly distributed mostly within a dense area around the centre of the SKA-Low, and then in 3 arms having 16 station clusters each. In preparation for the SKA Phase 1 (SKA1) System Critical Design Review (CDR), prototype stations were deployed at the Murchison Radio-astronomy Observatory (MRO) site (Western Australia) near the Murchison Widefield Array (MWA) radio telescope. The project involved multiple parties in an International collaboration building and testing different prototypes of the SKA1-Low station near the actual site. This resulted in both organisational and logistic challenges typical of a deployment of the actual telescope. The test set-up involved a phased build-up of the complex station of log-periodic antennas, by starting from the deployment of 48 antennas and related station signal processing (called AAVS1.5, where AAVS stands for Aperture Array Verification System), followed by expansion to a full station (AAVS2.0). As reference a station with dipole antennas EDA2 (EDA: Engineering Development Array) was deployed. This test set-up was used for an extensive test and evaluation programme. All test antenna configurations were simulated in detail by electromagnetic (EM) models, and the prediction of the models was further verified by appropriate tests with a drone-based radio frequency source. Astronomical observations on Sun and galaxy transit were performed with calibrated stations of both EDA2, AAVS1.5 and AAVS2.0. All 3 configurations were calibrated. EM modelling and calibration results for the full station AAVS2.0 and EM verification for the AAVS1.5 station are presented. The comparisons between the behaviour of the log-periodic antennas and the dipoles have advanced our understanding the calibration quality and the technological maturity of the future SKA1-Low array.
KEYWORDS: Prototyping, Analog electronics, Signal processing, Electronic filtering, Digital filtering, Data conversion, Software development, Field programmable gate arrays, Polarization, Antennas
A novel version of digital hardware Italian Tile Processing Module (ITPM) 1.6 has been released for the Low-Frequency Aperture Array (LFAA) component of the Square Kilometre Array (SKA). This back-end includes two plugged-in main blocks, as an analog device , the Pre-ADU board, and an Analog to Digital Unit (ADU), a 6U board containing sixteen dual-inputs Analog to Digital Converters and two Field Programmable Gate Array (FPGA) devices, capable of digitizing and processing 32 RF input signals (50-650 MHz). We present the main features of the upgrade of the board compared to previous versions: there are new and high performance components improving processing capability, mechanical changes matching the design of the housing sub-rack and finally a general reduction of the overall power consumption. The ITPM ADU 1.6 version, now in engineering phase together with its sub-rack system, is currently the last prototype before the design of the industrial line for mass production, necessary for the LFAA deployment. Results of system performances will be presented.
Low frequency aperture array technology requires advanced ad-hoc tools for performing antenna and array pattern characterization and instrumental calibration. A micro Unmanned Aerial Vehicle (UAV) mounting a radio-frequency transmitting system developed in Italy has demonstrated to satisfy the challenging characteristics of these tasks. Therefore, a measurement campaign by means of this UAV system has been planned to one Dutch station of the Low Frequency Array (LOFAR) with the main goal to improve the LOFAR antenna and array models. In preparation for this campaign, some initial tests applying the UAV system to one low-frequency antenna of LOFAR were performed in Italy. This contribution describes this measurement session and shows that the measured antenna gain patterns at different frequencies between 40 and 70 MHz agree very well with the electromagnetic models.
KEYWORDS: Signal detection, Interference (communication), Field programmable gate arrays, Zinc, Stochastic processes, Fourier transforms, Space telescopes, Galactic astronomy, Signal processing, Principal component analysis
SETI, the Search for ExtraTerrestrial Intelligence, is the search for radio signals emitted by alien civilizations living in the Galaxy. Narrow-band FFT-based approaches have been preferred in SETI, since their computation time only grows like N*lnN, where N is the number of time samples. On the contrary, a wide-band approach based on the Kahrunen-Lo`eve Transform (KLT) algorithm would be preferable, but it would scale like N*N. In this paper, we describe a hardware-software infrastructure based on FPGA boards and GPU-based PCs that circumvents this computation-time problem allowing for a real-time KLT.
M. Murgia, G. Bianchi, P. Bolli, G. Comoretto, D. Dallacasa, M. Farooqui, F. Gaudiomonte, L. Gregorini, F. Govoni, K-H. Mack, M. Massardi, A. Mattana, A. Melis, J. Monari, L. Mureddu, G. Naldi, F. Paonessa, F. Perini, A. Poddighe, I. Porceddu, I. Prandoni, G. Pupillo, M. Schiaffino, F. Schillirò, G. Serra, A. Tibaldi, T. Venturi, G. Virone, A. Zanichelli
We present a project aimed at realizing an Italian aperture array demonstrator constituted by prototypical Vivaldi antennas designed to operate at radio frequencies below 500 MHz. We focus on an array composed of a core plus a few satellite phased-array stations to be installed at the Sardinia Radio Telescope (SRT) site. The antenna elements are mobile and thus it will be possible to investigate the performance in terms of both uv-coverage and synthesized resolution resulting from different configurations of the array.
KEYWORDS: Receivers, Antennas, Mirrors, Telescopes, Radio astronomy, Control systems, Space telescopes, Radio telescopes, Astronomy, Electromagnetic coupling
We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m
diameter parabolic radiotelescope capable to operate with high efficiency in the 0.3-116 GHz frequency range. The
instrument is the result of a scientific and technical collaboration among three Structures of the Italian National Institute
for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomy Observatory (in
Sardinia,) and the Arcetri Astrophysical Observatory in Florence. Funding agencies are the Italian Ministry of Education
and Scientific Research, the Sardinia Regional Government, and the Italian Space Agency (ASI,) that has recently
rejoined the project. The telescope site is about 35 km North of Cagliari.
The radio telescope has a shaped Gregorian optical configuration with a 7.9 m diameter secondary mirror and
supplementary Beam-WaveGuide (BWG) mirrors. With four possible focal positions (primary, Gregorian, and two
BWGs), SRT will be able to allocate up to 20 remotely controllable receivers. One of the most advanced technical
features of the SRT is the active surface: the primary mirror will be composed by 1008 panels supported by electromechanical
actuators digitally controlled to compensate for gravitational deformations. With the completion of the
foundation on spring 2006 the SRT project entered its final construction phase. This paper reports on the latest advances
on the SRT project.
To measure extremely faint signals like Cosmic Microwave Background Polarization (a few percent of CMB anisotropy) it is necessary to use very high sensitivity radiometers. This means to adopt low noise cryogenic front-end and long integration times. This is the case of BaR-SPOrt (Balloon borne Radiometer for Sky Polarization Observations), an experiment designed to measure the CMB polarization at sub-degree angular scales. In the millimeter range, where coherent radiometers (polarimeters) are typically employed, usual mechanical coolers can represent a limit to the final sensitivity due to their base temperature instability. As a matter of fact, in correlation polarimeter, temperature fluctuations of the front-end devices, can both mimic a polarized signal and severely limit instrumental sensitivity. Here we discuss in detail the thermal design of the cryostat housing the instrument with particular attention to the closed loop cryocooler adopted, which is able to guarantee 6W at 77K with a stability better than 0.1 K over several hours.
The measure of the faint polarized signal of the Cosmic Microwave Background (few percent of the CMB Anisotropy) requires instruments with very low contamination from systematic effects, high stability and high sensitivity. The BaR-SPOrt experiment, in sharing with the SPOrt project on ISS, is based on analog correlation receivers with components custom designed to match all of these requirements. Here we present the architecture, the design analysis and the status of the realization of the 32 GHz receiver.
SPOrt (Sky Polarization Observatory) is a space experiment to be flown on the International Space Station during Early Utilization Phase aimed at measuring the microwave polarized emission with FWHM = 7 deg, in the frequency range 22-90 GHz. The Galactic polarized emission can be observed at the lower frequencies and the polarization of Cosmic Microwave Background (CMB) at 90 GHz, where contaminants are expected to be less important. The extremely low level of the CMB Polarization signal calls for intrinsically stable radiometers. The SPOrt instrument is expressly devoted to CMB polarization measurements and the whole design has been optimized for minimizing instrumental polarization effects. In this contribution we present the receiver architecture based on correlation techniques, the analysis showing its intrinsic stability and the custom hardware development carried out to detect such a low signal.
BaR-SPOrt (Balloon-borne Radiometers for Sky Polarisation
Observations) is an experiment to measure the linearly polarized
emission of sky patches at 32 and 90 GHz with sub-degree angular
resolution. It is equipped with high sensitivity correlation
polarimeters for simultaneous detection of both the U and Q stokes
parameters of the incident radiation. On-axis telescope is used to
observe angular scales where the expected polarization of the
Cosmic Microwave Background (CMBP) peaks. This project shares most
of the know-how and sophisticated technology developed for the
SPOrt experiment onboard the International Space Station. The
payload is designed to flight onboard long duration stratospheric
balloons both in the Northern and Southern hemispheres where low
foreground emission sky patches are accessible. Due to the
weakness of the expected CMBP signal (in the range of microK),
much care has been spent to optimize the instrument design with
respect to the systematics generation, observing time efficiency
and long term stability. In this contribution we present the
instrument design, and first tests on some components of the 32
GHz radiometer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.