Aminolevulinc-acid induced protoporphyrin IX (ALA-PpIX) is being investigated as a biomarker to guide neurosurgical resection of brain tumors. ALA-PpIX fluorescence can be observed visually in the surgical field; however, raw fluorescence emissions can be distorted by factors other than the fluorophore concentration. Specifically, fluorescence emissions are mixed with autofluorescence and attenuated by background absorption and scattering properties of the tissue. Recent work at Dartmouth has developed advanced fluorescence detection approaches that return quantitative assessments of PpIX concentration, which are independent of background optical properties. The quantitative fluorescence imaging (qFI) approach has increased sensitivity to residual disease within the resection cavity at the end of surgery that was not visible to the naked eye through the operating microscope.
This presentation outlines clinical observations made during an ongoing investigation of ALA-PpIX based guidance of tumor resection. PpIX fluorescence measurements made in a wide-field hyperspectral imaging approach are co-registered with point-assessment using a fiber optic probe. Data show variations in the measured PpIX accumulation among different clinical tumor grades (i.e. high grade glioma, low grade glioma), types (i.e. primary tumors. metastases) and normal structures of interest (e.g. normal cortex, hippocampus). These results highlight the contrast enhancement and underscore the potential clinical benefit offered from quantitative measurements of PpIX concentration during resection of intracranial tumors.
Optical devices for measuring protoporphryin IX (PpIX) fluorescence in tissue are routinely validated by measurements in optical phantoms. Yet there exists limited data to form a consensus on the recipe for phantoms that both mimic the optical properties found in tissue and yield a reliable and stable relationship between PpIX concentration and the fluorescence remission intensity. This study characterizes the influence of multiple phantom components on PpIX fluorescence emission intensity, using Intralipid as the scattering source, bovine whole blood as the background absorber, and Tween as a surfactant to prevent PpIX aggregation. Optical measurements showed a linear proportionality (r>0.99) between fluorescence intensity and PpIX concentration (0.1 to 10 μg/mL) over a range of Intralipid (1 to 2%) and whole blood (0.5 to 3%) for phantoms containing low surfactant (≤0.1%), with fluorescence intensities and scattering and absorption properties stable for 5 h after mixing. The role of surfactant in PpIX phantoms was found to be complex, as aggregation was evident in aqueous nonturbid phantoms with no surfactant (0% Tween), and avoided in phantoms containing Intralipid as the scattering source with no additional or low amounts of added surfactant (≤0.1% Tween). Conversely, phantoms containing higher surfactant content (>0.1% Tween) and whole blood showed interactions that distorted the fluorescence emissions.
Quantification of multiple fluorescence markers during neurosurgery has the potential to provide complementary contrast mechanisms between normal and malignant tissues, and one potential combination involves fluorescein sodium (FS) and aminolevulinic acid-induced protoporphyrin IX (PpIX). We focus on the interpretation of reflectance spectra containing contributions from elastically scattered (reflected) photons as well as fluorescence emissions from a strong fluorophore (i.e., FS). A model-based approach to extract μa and μs′ in the presence of FS emission is validated in optical phantoms constructed with Intralipid (1% to 2% lipid) and whole blood (1% to 3% volume fraction), over a wide range of FS concentrations (0 to 1000 μg/ml). The results show that modeling reflectance as a combination of elastically scattered light and attenuation-corrected FS-based emission yielded more accurate tissue parameter estimates when compared with a nonmodified reflectance model, with reduced maximum errors for blood volume (22% versus 90%), microvascular saturation (21% versus 100%), and μs′ (13% versus 207%). Additionally, quantitative PpIX fluorescence sampled in the same phantom as FS showed significant differences depending on the reflectance model used to estimate optical properties (i.e., maximum error 29% versus 86%). These data represent a first step toward using quantitative optical spectroscopy to guide surgeries through simultaneous assessment of FS and PpIX.
Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize
surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is
complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw
fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired
measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on
the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties
from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission
from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a
small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and
fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of
tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood
oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%,
respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.