The Nano-satellite Atmospheric Chemistry Hyperspectral Observation System (NACHOS) is a high-throughput (f/2.9), high spectral resolution (~1.3 nm optical resolution, 0.6 nm sampling) Offner-design hyperspectral imager operating in the 300-500 nm spectral region. The 1.5U instrument payload (1U optical system, 0.5U electronics module) is hosted by a 1.5U LANL-designed CubeSat bus to comprise a 3U complete satellite. Spectroscopically similar to NASA’s Ozone Monitoring Instrument (OMI), which provides wide-field global mapping of ozone and other gases at coarse spatial resolution, NACHOS fills the complementary niche of targeted measurements at much higher spatial resolution. With 350 across-track spatial pixels and a 15-degree across-track field of view, NACHOS will provide spectral imaging at roughly 0.4 km per pixel from 500 km altitude. NACHOS incorporates highly streamlined gas-retrieval algorithms for rapid onboard processing, alleviating the need to routinely downlink massive hyperspectral data cubes. We will discuss the instrument design, challenges in achieving mechanical robustness to launch vibration in such a compact instrument, the onboard calibration system, and gas-retrieval data downlink strategy. We will also discuss potential science missions, including monitoring of NO2 as an easily detected proxy for anthropogenic fossil-fuel greenhouse gases, monitoring lowlevel SO2 degassing at pre-eruptive volcanoes, H2CO from wildfires, and characterization of aerosols. The long-term vision is for a many-satellite constellation that could provide both high spatial resolution and frequent revisits for selected targets of interest. As an initial technology demonstration of this vision, the NACHOS project is currently slated to launch two CubeSats in early 2022.
This paper presents the deployment of an embedded active sensing platform for real-time condition monitoring of
telescopes in the RAPid Telescopes for Optical Response (RAPTOR) observatory network. The RAPTOR network
consists of several ground-based autonomous astronomical observatories primarily designed to search for astrophysical
transients such as gamma-ray bursts. In order to capture astrophysical transients of interest, the telescopes must remain
in peak operating condition to move swiftly from one potential transient to the next throughout the night. However,
certain components of these telescopes have until recently been maintained in an ad hoc manner, often being permitted
to run to failure, resulting in the inability to drive the telescope. In a recent study, a damage classifier was developed
using the statistical pattern recognition paradigm of structural health monitoring (SHM) to identify the onset of damage
in critical telescope drive components. In this work, a prototype embedded active sensing platform is deployed to the
telescope structure in order to record data for use in detecting the onset of telescope drive component damage and alert
system administrators prior to system failure.
We describe the design and operation of a small, transportable, robotic observatory that has been developed at Los Alamos
National Laboratory. This small observatory, called RQD2 (Raptor-Q Design 2), is the prototype for nodes in a global
network capable of continuous persistent monitoring of the night sky. The observatory employs five wide-field imagers
that altogether view about 90% of the sky above 12 degrees elevation with a sensitivity of R=10 magnitude in 10 seconds.
Operating robotically, the RQD2 system acquires a nearly full-sky image every 20 seconds, taking more than 10,000
individual images per night. It also runs real-time astrometric and photometric pipelines that provide both a capability to
autonomously search for bright astronomical transients and monitor the variability of optical extinction across the full sky.
The first RQD2 observatory began operation in March 2009 and is currently operating at the Fenton Hill site located near
Los Alamos, NM.We present a detailed description of the RQD2 system and the data taken during the first several months
of operation.
Over the past four years we have seen continued advancement in network technology and how those technologies are beginning to enable astronomical science. Even though some sociological aspects are hindering full cooperation between most observatories and telescopes outside of their academic or institutional connections, an unprecedented step during the summer of 2005 was taken towards creating a world-wide interconnection of astronomical assets. The Telescope Alert Operations Network System (TALONS), a centralized server/client bi-directional network developed and operated by Los Alamos National Laboratory, integrated one of its network nodes with a node from the eScience Telescopes for Astronomical Research (eSTAR), a peer-to-peer agent based network developed and operated by The University of Exeter. Each network can act independently, providing support for their direct clients, and by interconnection provide local clients with access to; outside telescope systems, software tools unavailable locally, and the ability to utilize assets far more efficiently, thereby enabling science on a world-wide scale. In this paper we will look at the evolution of these independent networks into the worlds first heterogeneous telescope network and where this may take astronomy in the future. We will also examine those key elements necessary to providing universal communication between diverse astronomical networks.
The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.
Fast variability of optical objects is an interesting though poorly explored subject in modern astronomy. Real-time data processing and identification of transient celestial events in the images is very important for such study as it allows rapid follow-up with more sensitive instruments. We discuss an approach which we have developed for the RAPTOR project, a pioneering closed-loop system combining real-time transient detection with rapid follow-up. RAPTOR's data processing pipeline is able to identify and localize an optical transient within seconds after the observation. The testing we performed so far have been confirming the effectiveness of our method for the optical transient detection. The software pipeline we have developed for RAPTOR can easily be applied to the data from other experiments.
The mining of Virtual Observatories (VOs) is becoming a powerful new method for discovery in astronomy. Here we report on the development of SkyDOT (Sky Database for Objects in the Time domain), a new Virtual Observatory, which is dedicated to the study of sky variability. The site will confederate a number of massive variability surveys and enable exploration of the time domain in astronomy. We discuss the architecture of the database and the functionality of the user interface. An important aspect of SkyDOT is that it is continuously updated in near real time so that users can access new observations in a timely manner. The site will also utilize high level machine learning tools that will allow
sophisticated mining of the archive. Another key feature is the real time data stream provided by RAPTOR (RAPid Telescopes for Optical Response), a new sky monitoring experiment under construction at Los Alamos National Laboratory (LANL).
The Rapid Telescopes for Optical Response (RAPTOR) experiment is a spatially distributed system of autonomous robotic telescopes that is designed to monitor the sky for optical transients. The core of the ystem is composed of two telescope arrays, separated by 38 kilometers, that stereoscopically view the same 1500 square-degree field with a wide-field imaging array and a central 4 square-degree field with a more sensitive narrow-field ``fovea" imager. Coupled to each telescope array is a real-time data analysis pipeline that is designed to identify interesting transients on timescales of seconds and, when a celestial transient is identified, to command the rapidly slewing robotic mounts to point the narrow-field ``fovea'' imagers at the transient. The two narrow-field telescopes then image the transient with higher spatial resolution and at a faster cadence to gather light curve information. Each ``fovea" camera also images the transient through a different filter to provide color information. This stereoscopic monitoring array is supplemented by a rapidly slewing telescope with a low resolution spectrograph for follow-up observations of transients and a sky patrol telescope that nightly monitors about 10,000 square-degrees for variations, with timescales of a day or longer, to a depth about 100 times fainter. In addition to searching for fast transients, we will use the data stream from RAPTOR as a real-time sentinel for recognizing important variations in known sources. All of the data will be publically released through a virtual observatory called SkyDOT (Sky Database for Objects in the Time Domain) that we are developing for studying variability of the optical sky. Altogether, the RAPTOR project aims to construct a new type of system for discovery in optical astronomy---one that explores the time domain by "mining the sky in real time".
The Rapid Telescope for Optical Response (RAPTOR) program consists of a network of robotic telescopes dedicated to the search for fast optical transients. The pilot project is composed of three observatories separated by approximately 38 kilometers located near Los Alamos, New Mexico. Each of these observatories is composed of a telescope, mount, enclosure, and weather station, all operating robotically to perform individual or coordinated transient searches. The telescopes employ rapidly slewing mounts capable of slewing a 250 pound load 180 degrees in under 2 seconds with arcsecond precision. Each telescope consists of wide-field cameras for transient detection and a narrow-field camera with greater resolution and sensitivity. The telescopes work together by employing a closed-loop system for transient detection and follow-up. Using the combined data from simultaneous observations, transient alerts are generated and distributed via the Internet. Each RAPTOR telescope also has the capability of rapidly responding to external transient alerts received over the Internet from a variety of ground-based and satellite sources. Each observatory may be controlled directly, remotely, or robotically while providing state-of-health and observational results to the client and the other RAPTOR observatories. We discuss the design and implementation of the spatially distributed RAPTOR system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.