NASA’s return to the Moon coincides with explosive growth in exoplanet discovery. Missions are being formulated to search for habitable planets orbiting other stars, making this the ideal time to deploy an instrument suite to the lunar surface to help us recognize a habitable exoplanet when we see it. We present EarthShine, a technically mature, three-instrument suite to observe the whole Earth from the Moon as an exoplanet proxy. EarthShine data will validate and improve models critical for designing missions to image and characterize exoplanets, thus informing observing strategies for flagship missions to directly image exoplanets. EarthShine will answer interconnected questions in Earth and lunar science, exoplanets, and astrobiology, related to the credo “follow the water.” EarthShine can take advantage of current NASA programs to conduct science from the Moon with low-cost, mature space hardware to reduce risk and assure success. Like the 1968 Apollo Earthrise image of our home planet, lonely in the black sky, the appeal of EarthShine to a multidisciplinary array of researchers in Earth Science, Planetary Science, and astrophysics will maximize both its scientific impact and its impact on the general public.
A large format germanium immersion grating was flycut with a single-point diamond tool on the Precision Engineering Research Lathe (PERL) at the Lawrence Livermore National Laboratory (LLNL) in November – December 2015. The grating, referred to as 002u, has an area of 59 mm x 67 mm (along-groove and cross-groove directions), line pitch of 88 line/mm, and blaze angle of 32 degree. Based on total groove length, the 002u grating is five times larger than the previous largest grating (ZnSe) cut on PERL, and forty-five times larger than the previous largest germanium grating cut on PERL. The key risks associated with cutting the 002u grating were tool wear and keeping the PERL machine running uninterrupted in a stable machining environment. This paper presents the strategies employed to mitigate these risks, introduces pre-machining of the as-etched grating substrate to produce a smooth, flat, damage-free surface into which the grooves are cut, and reports on trade-offs that drove decisions and experimental results.
We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 104. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO2 laser sets an upper bound on total integrated scatter of 0.5%.
The reflection grating spectrometer (RGS) on-board the x-ray multi-mirror (XMM) mission incorporates an array of reflection gratings oriented at grazing incidence in the x- ray optical path immediately behind a grazing incidence telescope. Dispersed light is imaged on a strip of CCD- detectors slightly offset from the telescope focal plane. The grating array picks off roughly half the light emanating from the telescope; the other half passes undeflected through the array where it is imaged by the European photon imaging camera (EPIC) experiment. XMM carries two such identical units, plus a third telescope with an EPIC detector, but no RGS. The basic elements of the RGA include: 202 identical reflection gratings, a set of precision rails with bosses that determine the position and alignment of each grating, a monolithic beryllium integrating structure on which the rails are mounted, and a set of three, kinematic support mounts which fix the array to the telescope. In this paper, we review our progress on the fabrication and testing of the RGA hardware, with particular attention to the components comprising the engineering qualification model, a flight-representative prototype which will be completely assembled in September of this year.
The x-ray multi-mirror (XMM) mission is the second of four cornerstone projects of the ESA long-term program for space science, Horizon 2000. The payload comprises three co- aligned high-throughput, imaging telescopes with a FOV of 30 arcmin and spatial resolution less than 20 arcsec. Imaging CCD-detectors (EPIC) are placed in the focus of each telescope. Behind two of the three telescopes, about half the x-ray light is utilized by the reflection grating spectrometer (RGS). The x-ray instruments are co-aligned and measure simultaneously with an optical monitor (OM). The RGS instruments achieve high spectral resolution and high efficiency in the combined first and second order of diffraction in the wavelength range between 5 and 35 angstrom. The design incorporates an array of reflection gratings placed in the converging beam at the exit from the x-ray telescope. The grating stack diffracts the x-rays to an array of dedicated charge-coupled device (CCD) detectors offset from the telescope focal plane. The cooling of the CCDs is provided through a passive radiator. The design and performance of the instrument are described below.
A prototype array consisting of eight diffraction gratings has been fabricated for the XMM Reflection Grating Spectrometer. A component of the full spectrometer is an array of approximately 200 diffraction gratings. The diffraction gratings were produced using lightweight silicon carbide substrates and a replication technique. The prototype array was developed and assembled using the same tolerances as the flight arrays which have typical tolerances of 3 micrometers in translation and sub-arc seconds in rotation. The metrology applied during inspection and assembly included precision linear measurements, full aperture figure measurements, and angular interferometry.
We obtained monochromatic emission line images with a prototype model of the Reflection Grating Spectrometer for XMM, at the MPE Panter long beam test facility in Munich. We concentrate on the interpretation and analysis of the distribution of dispersed light from single gratings. We present the outline of an exact first order scalar diffraction calculation of the effects of scattering on a grating on the angular profile of the dispersed radiation. Using the resulting predicted scattering profile, we extract the core of the measured profiles for individual gratings, and find good agreement between the shape of these cores and the shape predicted for the long-spatial wavelength slope distribution on the gratings, obtained from interferometry. The widths of the cores meet the specifications for the flatness of the grating substrates.
X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XMM Reflection Grating Spectrometer has been carried out at the Panter test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCDs. Line profile and efficiency measurements were made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes' fabrication. Examination of the individual grating surface's at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica's surface.
The Reflection Grating Spectrometer (RGS) onboard the ESA satellite XMM (X-ray Multi Mirror mission) combines a high resolving power (approximately 400 at 0.5 keV) with a large effective area (approximately 200 cm2). The spectral range selected for RGS (5 - 35 angstroms) contains the K shell transitions of N, O, Ne, Mg, Al, Si and S as well as the important L shell transitions of FE. The resolving power allows the study of a wide variety of challenging scientific questions. Detailed temperature diagnostics are feasible as the ionization balance is a unique function of the distribution of the electron temperature. Density diagnostics are provided by studying He-like triplets where the ratio of the forbidden to intercombination lines varies with density. Other fields of interest include the determination of elemental abundances, the study of optical depth effects, velocity diagnostics by measuring Doppler shifts and the estimate of magnetic fields through the observation of Zeeman splitting. The resolving power is obtained by an array of 240 gratings placed behind the mirrors of the telescope, dispersing about half of the X-rays in two spectroscopic orders. The X-rays are recorded by an array of 9 large format CCDs. These CCDs are operated in the frame transfer mode. They are back illuminated as the quantum efficiency of front illuminated devices is poor at low energies because of their poly-silicon gate structure. To suppress dark current the CCDs are passively cooled. In order to obtain the effective area of about 200 cm2, grating arrays and CCD cameras are placed behind two of the three XMM telescopes. A model of RGS was tested last autumn ('93) at the Panter long beam X-ray facility in Munich. The model consisted of a subset of four mirrors, eight representative gratings covering a small section of the inner mirror shells and a CCD camera containing three CCDs. The purpose of these tests was to verify the resolution and sensitivity of the instrument as a function of X-ray energy. Extensive simulations, using a Monte Carlo raytracing code, are used to interpret these tests. Preliminary results of these tests will be discussed and compared to the calculated response.
The X Ray Multimirror Mission will include a spectrometer consisting of two arrays of variable line-spaced reflection gratings for use in the 350 eV to 2.5 keV energy range. Approximately 720 replica gratings will be needed for two flight grating arrays and one spare. Evaluation of potential master gratings to be used in the replication process has begun. Both reflectivity and scattering x-ray measurements for three mechanically ruled prototype master gratings have been reported.
The Reflection Grating Spectrometer Experiment (RGS), which has been selected for flight on the
European Space Agency's X-Ray Multi-Mirror Mission (XMM), includes two arrays of reflection gratings
that are placed in the X-ray optical path behind two separate grazing incidence X-ray telescopes. Each of
the grating arrays picks off roughly half the X-ray light emanating from its telescope and diffracts it to a
dedicated strip of charge-coupled device (CCD) detectors offset from the telescope focal plane. The arrays
contain 224 100 mm X 200 mm gratings, each mounted at a graze angle of 1.58° to the incident beam.
The gratings are produced by epoxy replication of a common master onto very thin substrates. Both the
gratings and the detectors are mounted on a Rowland circle which also includes the telescope focus. In
this paper, we review the current state of both the engineering and the optical designs for the grating
arrays.
An automated multi-object spectroscopy system (AMOS)
is being developed for use on the 3-meter telescope at Lick Observatory.
The overall design is compatible with the eventual goal of acquiring up
to one hundred spectra simultaneously in a one degree field of view.
The speed and accuracy of AMOS preserve the real time decision
making and field changing flexibility associated with traditional singlesource
observing techniques. AMOS will operate at the 3-meter prime
focus and will feed a floor-mounted spectrograph. We describe some
engineering design details and the results of laboratory and 1-meter
telescope testing of AMOS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.