Emerging applications in Defense and Security require sensors with state-of-the-art sensitivity and capabilities. Among these sensors, the imaging spectrometer is an instrument yielding a large amount of rich information about the measured scene. Standoff detection, identification and quantification of chemicals in the gaseous state are fundamental needs in several fields of applications. Imaging spectrometers have unmatched capabilities to meet the requirements of these applications.
Telops has developed the FIRST, a LWIR hyperspectral imager. The FIRST is based on FTIR technology to provide high spectral resolution and to enable high accuracy radiometric calibration. The FIRST, a man portable sensor, provides datacubes of up to 320x256 pixels at 0.35 mrad spatial resolution over the 8-12 μm spectral range at spectral resolutions of up to 0.25 cm-1. The FIRST has been used in several field measurements, including demonstration of standoff chemical agent detection. One key feature of the FIRST is its ability to give calibrated measurements. The quality of the calibrated measurements will be presented in this paper.
Sensitivity, spectral resolution and radiometric stability as obtained during field and laboratory measurements will be presented. Finally, images of chemical releases detected with the FIRST will be shown.
Emerging applications in Defense and Security require sensors with state-of-the-art sensitivity and capabilities. Among these sensors, the imaging spectrometer is an instrument yielding a large amount of rich information about the measured scene. Standoff detection, identification and quantification of chemicals in the gaseous state are fundamental needs in several fields of applications. Imaging spectrometers have unmatched capabilities to meet the requirements of these applications.
Telops has developed the FIRST, a LWIR hyperspectral imager. The FIRST is based on FTIR technology to yield high spectral resolution and to enable high accuracy radiometric calibration. The FIRST, a man portable sensor, provides datacubes of up to 320x256 pixels at 0.35 mrad spatial resolution over the 8-12 μm spectral range at spectral resolutions of up to 0.25 cm-1. The FIRST has been used in several field measurements, including demonstration of standoff chemical agent detection. One key feature of the FIRST is its ability to give calibrated measurements. The quality of the radiometric and spectral calibration will be presented in this paper.
During the field measurements, the FIRST operated under changing environmental conditions while many calibration measurements were taken. In this paper, we will present the stability of the calibration of the FIRST obtained during the field campaigns.
Standoff detection, identification and quantification of chemicals in the gaseous state are fundamental needs in several fields of applications. Additional required sensor characteristics include high sensitivity, low false alarms and high-speed (ideally real-time) operation, all in a compact and robust package. The thermal infrared portion of the electromagnetic spectrum has been utilized to implement such chemical sensors, either with spectrometers (with none or moderate imaging capability) or with imagers (with moderate spectral capability). Only with the recent emergence of high-speed, large format infrared imaging arrays, has it been possible to design chemical sensors offering uncompromising performance in the spectral, spatial, as well as the temporal domain. Telops has developed a novel instrument that can not only provide an early warning for chemical agents and toxic chemicals, but also one that provides a "Chemical Map" of the field of view and is man portable. To provide to best field imaging spectroscopy instrument, Telops has developed the FIRST, Field-portable Imaging Radiometric Spectrometer Technology, instrument. This instrument is based on a modular design that includes: a high performance infrared FPA and data acquisition electronics, onboard data processing electronics, a high performance Fourier transform modulator, dual integrated radiometric calibration targets, a visible boresight camera. These modules, assembled together in an environmentally robust structure, used in combination with Telops' proven radiometric and spectral calibration algorithms make this instrument a world-class passive standoff detection system for chemical imaging.
Standoff detection, identification and quantification of chemicals in the gaseous state are fundamental needs in several fields of applications. Sensor requirements derived from these applications include high sensitivity, low false alarms and real-time operation, all in a compact and robust package suitable for field use. The thermal infrared portion of the electromagnetic spectrum has been utilized to implement such chemical sensors, either with spectrometers (with no or moderate imaging capability) or with imagers (with moderate spectral capability). Only with the recent emergence of high-speed, large format infrared imaging arrays has it been possible to design chemical sensors offering uncompromising performance in the spectral, spatial, as well as the temporal domain. It is clear from analytical studies that the combined spatial and spectral information holds enormous promises on improving the current performance of passive detection, identification and quantification of chemical agents. This paper presents detection, identification and quantification algorithms developed for hyperspectral imagers operating in the thermal infrared. The effectiveness of these algorithms is illustrated using gaseous releases datacubes acquired using the Telops FIRST imaging spectrometer in the field.
Standoff detection, identification and quantification of chemicals in the gaseous state are fundamental needs in several fields of applications. Additional required sensor characteristics include high sensitivity, low false alarms and high-speed (ideally real-time) operation, all in a compact and robust package. The thermal infrared portion of the electromagnetic spectrum has been utilized to implement such chemical sensors, either with spectrometers (with none or moderate imaging capability) or with imagers (with moderate spectral capability). Only with the recent emergence of high-speed, large format infrared imaging arrays, has it been possible to design chemical sensors offering uncompromising performance in the spectral, spatial, as well as the temporal domain. Telops has developed a novel instrument that can not only provide an early warning for chemical agents and toxic chemicals, but also one that provides a "Chemical Map" of the field of view and is man portable. To provide to best field imaging spectroscopy instrument, Telops has developed the FIRST, Field-portable Imaging Radiometric Spectrometer Technology, instrument. This instrument is based on a modular design that includes: a high performance infrared FPA and data acquisition electronics, onboard data processing electronics, a high performance Fourier transform modulator, dual integrated radiometric calibration targets and a visible boresighted camera. These modules, assembled together in an environmentally robust structure, used in combination with Telops' proven radiometric and spectral calibration algorithms make this instrument a world-class passive standoff detection system for chemical imaging.
Standoff detection, identification and quantification of chemicals require sensitive spectrometers with calibration capabilities. Recent developments in LWIR focal plane arrays combined with the mastering of Fourier-Transform Spectrometer technology allow the realization of an imaging spectrometer specifically designed for chemical imaging. The spectral and radiometric calibration of the instrument enables the processing of the data to detect the chemicals with spectral signatures in the 8-12 μm region. Spectral images are processed and the contrast between different pixels is used to map the chemicals.
Telops has built a field-portable instrument. This paper presents some details about the design of this state-of-the-art sensor. Performance and test results are also presented along with results from a field test.
Advancements in Mercury Cadmium Telluride (MCT) focal plane arrays (FPA) in recent years have allowed high performance longwave infrared imagers to prosper. In particular molecular and gas/chemical spectroscopy applications can be vastly advanced with these new products. However, for the transition from single pixel spectrometers to FPA base imaging spectrometers to succeed, a couple of parallel advancements must be made as well. Most Fourier transform spectrometers currently available are designed specifically for a 1 mm single pixel detector. Scientists who try to convert these systems into imaging spectrometers quickly run into throughput issues when FPAs reach sizes of up to 12.5mm, thus limiting the performance and greatly impacting the detection capabilities. Furthermore, for large FPAs the readout time can be significantly longer than the integration time. In turn, this requires slower sweep speeds with a higher degree of control of the scanning mechanism. The benefit of these new technologies in spectroscopy can only be demonstrated with a system optimally designed for imaging spectroscopy. This paper will address the issues of imaging spectroscopy and will show how an instrument designed for specifically imaging applications can dramatically improve the performance of the system and quality of the data acquired.
KEYWORDS: Interferometers, Sensors, Staring arrays, Spectroscopy, Calibration, Black bodies, Cameras, Control systems, Data acquisition, Imaging systems
Standoff detection, identification and quantification of chemicals require sensitive spectrometers with calibration capabilities. Recent developments in LWIR focal plane arrays combined with the mastering of Fourier-Transform Spectrometer technology allow the realization of an imaging spectrometer specifically designed for chemical imaging. The spectral and radiometric calibration of the instrument enables the processing of the data to detect the chemicals with spectral signatures in the 8-12 μm region. Spectral images are processed and the contrast between different pixels is used to map the chemicals. Telops is building the field-portable instrument. This paper presents the requirements for chemical detection in the LWIR, how the system is broken down into different modules and the details of each of these modules: calibration, interferometer, datacube acquisition and processing, and the main controller. The system has real-time processing capabilities of the measured data. Performance prediction is presented as well.
Standoff detection of chemical agents may be enhanced with the capability to measure an image of the agent concentration. The use of an imaging Fourier-Transform Spectrometer to perform these measurements is extensively modeled in order to predict its ultimate capabilities. The model developed allows one to determine the optimal
configuration of the instrument, taking into account the precise characteristics of realistic and existing hardware.
The model is first based on the calculation of radiative transfer from the scene into the instrument up to the imaging detector. Standard performance models of FTS are improved to include the particular features of imaging FTS operated with infrared cameras. The infrared focal plane arrays have their own constraints that are taken into account in the model.
An hyperspectral imager capable of sensing from 1 to 12 micrometers with three (3) possible field-of-views (FOV) steerable within a field-of-regard eight (8) times larger than the FOV is presented. This level of flexibility imposes several constraints on the front-end optics especially when the maximum etendue of the spectrometer must be maintained for all configurations. This paper presents the design approach and trade-offs leading to a high performance optical design. Other constraints such as mass and volume are also considered. An important limiting factor is the size of the window and its minimum distance to the primary mirror of the telescope. The design has been optimized by re-imaging the aperture stop on each component that are critical in size: the interferometer corner cubes, the steering mirror and the primary mirror of the telescope. A set of two (2) telescopes and two (2) afocal relays are interchanged to produce 3 FOVs with optimized etendue and minimum size on critical components.
Spectral radiometers and imaging radiometers have been used for decades to provide detailed information about the infrared properties of remote objects. Both of these senors provide complementary information. Even more information can be obtained using a fusion of these two instruments. A spectral imaging radiometer provides data absolutely registered in the spatial, spectral and temporal domain. In this paper we present SARIS, a new spectral imaging radiometer that will operate both from airborne and ground-based platform. SARIS will provide high speed, highly accurate, 16 X 16 spatial radiometric measurements with 1 cm-1 spectral resolution in the 2 to 5 micrometer spectral band. SARIS will measure up to 150 datacubes (a datacube is a complete spatial/spectral measurement) at a spectral resolution of 8 cm-1 and covering the spectral range from 3.5 to 5 micrometer. In this paper we present the mission, technical requirements and conceptual design of SARIS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.