KEYWORDS: Dark current, Signal to noise ratio, Sunlight, Quantum efficiency, Shortwaves, Active imaging, Infrared radiation, Continuous wave operation, Short wave infrared radiation, Sensors
In the last half-decade, the extended shortwave infrared (eSWIR) atmospheric band has become a focus of investigation for its potential to provide better object discrimination at range than the visible, as well as the near, shortwave, midwave, and longwave infrared bands, particularly in degraded visual environments such as smoke, dust, and smog. However, any detection band is only as useful as the best available detector, and thus, an investigation into the design of detectors for use in the eSWIR band is necessary before standards are established and applications put into practice. We examine the relationship between detector parameters and targeting performance in the eSWIR band for both passive and active detection. The effects of pixel pitch, dark current, read noise, frame rate, quantum efficiency, and well depth are examined and ranked in importance to an eSWIR system’s performance.
KEYWORDS: Sensors, Light sources and illumination, Imaging systems, Dark current, Cameras, Systems modeling, Short wave infrared radiation, Atmospheric modeling, Signal to noise ratio, Performance modeling
Interest in the eSWIR band is growing due to focal plane array technology advancements with mercury cadmium telluride and type-II superlattice materials. As design and fabrication processes improve, eSWIR detector size, weight, and power can now be optimized. For some applications, it is desirable to have a smaller detector size. Reduced solar illumination in the 2 to 2.5 μm spectral range creates a fundamental limit to passive imaging performance in the eSWIR band where the resolution benefit of small detectors cannot out-compete the reduced SNR in photon-starved environments. This research explores the underlying theory using signal-to-noise ratio radiometry and modeled target discrimination performance to assess the optimal detector size for eSWIR dependent upon illumination conditions. Finally, we model continuous-wave laser illumination in the eSWIR band to compare the effect of detector size on active and passive imaging for long-range object discrimination.
KEYWORDS: Clouds, Light sources and illumination, Short wave infrared radiation, Near infrared, Cameras, Sun, Atmospheric modeling, Multiple scattering, Signal to noise ratio, Sensors
Daytime low light conditions such as overcast, dawn, and dusk pose a challenge for object discrimination in the reflective bands, where the majority of illumination comes from reflected solar light. In reduced illumination conditions, sensor signal-to-noise ratio can suffer, inhibiting range performance for recognizing and identifying objects of interest. This performance reduction is more apparent in the longer wavelengths where there is less solar light. Range performance models show a strong dependence on cloud type, thickness, and time of day across all wavebands. Through an experimental and theoretical analysis of a passive sensitivity and resolution matched testbed, we compare Vis (0.4-0.7μm), NIR (0.7-1μm), SWIR (1-1.7μm), and eSWIR (2-2.5μm) to assess the limiting cases in which reduced illumination inhibits range performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.