The instrumentation plan for the ELT foresees the ArmazoNes high Dispersion Echelle Spectrograph (ANDES). The ANDES-project and consortium entered phase B in January 2022 and underwent several (internal and external) revisions by now to ensure that the requirements and eventually the challenging goals can be met by the physical design of the spectrograph.
Among its main scientific goals are the detection of atmospheres of exoplanets and the determination of fundamental physical constants. For this, high radial velocity precision and accuracy are required. Even though the ANDES-spectrograph is designed for maximum intrinsic stability, a calibration and thus a calibration unit is mandatory. To allow for maximum flexibility and modularity the calibration unit is physically split into three calibration units.
We show the design of the calibration units and their individual components, where possible. This includes the electronics, the mechanics, the software supporting and controlling the light guiding and calibration sources.
The ESO/ELT ANDES (ArmazoNes high Dispersion Echelle Spectrograph) project successfully completed the system architecture review and is currently finalizing its preliminary design phase. ANDES is the high-resolution spectrograph for the ELT (ESO Extremely Large Telescope) capable of reaching a resolution of R ~ 100,000 simultaneously, in a wavelength range between 0.35 -2.4 µm (goals included), characterized by high-precision and extreme calibration accuracy suitable to address a variety of flagship scientific cases across a wide range of astronomical domains. To fulfill the required specifications the proposed design adopts a modular approach where the instrument is split in four individual spectrographs, each fiber-fed, and thermally and vacuum stabilized. A dedicated front-end which host a single conjugated adaptive optics module, collects either the light from the telescope or from a calibration unit feeding in turn the individual spectrographs. To master the described complexity the same modularity is reflected also at the project management level: each of the 9 subsystems (counting also the software as a standalone subsystem) is under direct responsibility of different teams coordinated by the ANDES project office. The high distribution and the large community involvement, consisting of 24 institutes from 13 countries, represent certainly a challenge from the project management point of view. In this paper we present the project management approach we envisaged to master successfully all the ANDES project phases from the finalization of the preliminary design up to commissioning on-sky; in particular we will describe in detail the risk management and PA/QA activities we have foreseen to assure appropriate risk mitigation and an overall high-quality standard required for the ANDES project.
RAM analysis is crucial for the success of any measurement campaign and must be implemented at the earliest design phase of building an astronomical instrument. ANDES (ArmazoNes high Dispersion Echelle Spectrograph) currently in phase B will be the high-resolution spectrograph for the ELT formerly known as ELT-HIRES. Its design in the extended version foresees four spectrographs fed by fibers and operating both in seeing and diffraction-limited (adaptive optics assisted) mode. Due to these properties strictly related to flexibility and modularity, a RAM approach focused on different scientific data requirements permits a high availability for the main data acquisition modes. To implement this process, the product tree, active elements, modularity, component duty cycles, and degraded modes were defined in the earlier phases. In this way, RAM requirements contribute to defining design. This process avoids missing the control of particular aspects like maintenance accessibility, cost of operations, and downtime due to maintenance. The paper presents the process and how it is implemented in the ANDES project, thereby suggesting a design solution for the instrument.
The calibration units of today's instruments are often limited by the fact that a reference source can feed one or even two outputs without having much loss. As a result, there is often a trade-off between throughput and system size to be made. We have designed a novel Light Distribution System based on pneumatic actuators that allows a defined number of sources to be selected and several outputs to be fed at the same time.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 μm with the goal of extending it to 0.35-2.4 μm with the addition of an U arm to the BV spectrograph and a separate K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Modularity and fibre-feeding allows ANDES to be placed partly on the ELT Nasmyth platform and partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of almost 300 scientists and engineers which include the majority of the scientific and technical expertise in the field that can be found in ESO member states.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.