The resistance fluctuations of sensors can give improved selectivity and sensibility and the analysis is limited to power spectrum density only. Non-Gaussian low frequency noise components can be observed in nanoparticle gas sensors especially if some of the characteristics length scales is in the submicron range. These components can be characterized by higher-order spectra (HOS). In this paper, bispectra and trispectra are used. The modulus and phase characteristics of the higher-order spectra of the observed resistance fluctuations are analyzed separately. The explored sensors consist of WO3 films, with Pd nanoparticles uniformly distributed in the oxide structure.
Nanoparticle films of PdxWO3, with x being 0.01 or 0.12, were made by dual-beam gas deposition. Resistance noise as well as dc resistance were measured during exposure to ethanol and hydrogen gas. For ethanol concentrations exceeding 50 ppm, changes in the resistance noise gave 300 times larger detection sensitivity than changes in the dc resistance. This sensitivity reached a maximum at 250 °C and was very reproducible for ethanol sensing.
Conduction noise measurements were carried out in the 0.3 to 45 Hz frequency range on Au films covered by a thin layer of tungsten trioxide (WO3) nanoparticles. Exposing the films to alcohol vapor resulted in a gradually increased noise intensity which went through a maximum after an exposure time of the order of 15 min. The maximum noise intensity could increase by several orders of magnitude above the initial level. Longer exposure times made the noise decrease and approach its original value. This effect was not observed in the absence of WO3 nanoparticles. The phenomenon is discussed in terms of a new invasion noise model in which the noise is related to the insertion and extraction of mobile chemical species.
Thin films were made by spinning a dispersion of tin-doped indium-oxide particles, having an average diameter of 14 nm, onto glass substrates. As-deposited thin films displayed a resistivity (rho) of 0.3 (Omega) m and some optical absorption. Annealing in vacuum at 200 to 400 degree(s)C for 2 h, and subsequently in air at 500 degree(s)C for 2 h, produced films with (rho) equals10--3 (Omega) m and a visible transmittance exceeding 90 %. Leaving out the vacuum treatment yielded higher resistivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.