Optical alignment of the mirror components in a space telescope is an important process for obtaining high optical resolution and performance of the camera system. The alignment of mirrors depends on the external coordinate frame using a cube mirror, and a relative coordinate mapping between the mirror and the cube mirror before optical system integration is a prerequisite step. Therefore, in order to align the spacecraft camera mirrors, the relative coordinates of the vertex of each mirror and the corresponding cube mirror must be accurately measured. This paper proposes a new method for finding the vertex position of a primary mirror by using an optical fiber and alignment segments of the computer-generated hologram (CGH). The measurement system is composed of an optical testing interferometer, a multimode optical fiber. We used 2 theodolites to measure the relative coordinates of the optical fiber located at the mirror vertex with respect to the cube mirror, and achieved a measurement precision of less than 25um.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.