The photonics-based approach has recently become a strong candidate for realising a large-scale, practical quantum processor. Particularly in recent years, two-dimensional (2D) materials have become a strong candidate for developing an ideal integrated light source owing to their several unique advantages such as convenient on-chip integration. In this work, we study the effect of strain on the emission wavelength and carrier lifetime. We first show that the geometry of stressors can adjust the amount of strain and emission wavelength. Using this strain engineering technique, we demonstrate that the emission wavelength can be significantly shifted by ~10 nm while the carrier lifetime can also be engineered by ~30 %.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.