An EUV source optimization technique using compressive sensing is introduced in this paper. The pixelated source pattern is sparsely represented in a set of certain basis functions. Blue noise sampling method is used to select sampling points around the margins of the target layout for imaging fidelity evaluation. Based on the compressive sensing theory, the EUV SO is formulated as an l1-norm inverse reconstruction problem and solved by the linearized Bregman algorithm. Different types of sparse bases are also experimented in this paper to investigate their impact on the SO results. These bases include the 2D-DCT basis, spatial basis, Zernike basis, and Haar wavelet basis. Simulations show that ℓthe Haar wavelet basis results in the best imaging fidelity among the four types of bases.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.