Localization and labeling of function regions in brain is an important topic in experimental brain sciences because the huge amount of data collected by neuroscientists will become meaningless if we cannot give them a precise description of their locations. In this paper, we proposed a localization and labelling method of 3D MR image of rat brain based on Paxinos-Watson atlas. Our objective is to use the specific atlas to accomplish localization and labeling of specified tissue of interest (TOI) to mimic a veteran expert such that invisible or unclear anatomic function regions in the MR images of rat brain can be automatically identified and marked. We proposed a multi-step method to locate and label the TOIs from the MR image of rat brain. Firstly, pre-processing. It aims at the digitization and 3D reconstruction of the atlas and MRI of rat brain. Secondly, two-step registration. The global registration is to eliminate the big misalign and section angle offset as well as the scale between the MRI and atlas. We can choose some unambiguous and characteristic points manually, and based on these correspondences a coarse registration is obtained using affine model. The local registration is to address individual variability of rat brain that can be performed by using Snake model. Thirdly, post-processing. The goal is to locate and label the TOIs in the selected MR image of rat brain slice guided by well-registered atlas. The experiments demonstrated the feasibility of our method.
We have simulated fiber communication systems with the semiconductor micro-cavity lasers as light transmitters using rate equations. When the spontaneous emission factor of micro-cavity equals 0.1 and the lasers are modulated by 10 Gbit/s numerical codes, we have obtained both the received eye diagram after they transmit 60 kilometers and the relations of the unit area of the eye diagram with the transmission distance. It will provide theoretical value for the application of the micro-cavity lasers in optical communication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.