Augmented reality (AR) continues to be heavily studied as a research topic for potential medical use. The goal of seeing the patient’s anatomy below the surface of the human body has always been thought of as the ideal surgical navigation tool. Rather than observing medical imaging, such as computed tomography (CT) or magnetic Resonance (MR) images on a monitor, hospital personnel would be able to see patient specific pathologies through Augmented Reality (AR) glasses. Neurosurgery has commonly been a field of choice for AR integration because of the many needs that can potentially be met. Understanding AR in the neurosurgical Operating Room (OR) does pose some benefits well as concern in terms of human computer interaction (HCI). One of the core concepts of HCI is the idea of user-centered design. While one aims to create an intuitive interface for the user-group, introducing AR into the OR can increase cognitive overload and inattentional blindness if executed improperly without considering the full use-case and all stakeholders. A common application of neuro-navigation is in spinal surgery, which, while incredibly accurate, disrupts OR workflow. These devices drastically improve patient outcomes yet are seldom employed because of these disruptions. HCI concepts can better integrate AR into the OR to solve pitfalls observed in modern neuro-navigation, and gives designers, engineers and surgeons the necessary tools to develop AR solutions. Our goal is to thoroughly analyze the OR workflow such that AR can be effectively incorporated.
Cerebral endovascular neurosurgery has transformed the way we manage cerebrovascular disease. Several landmark trials have demonstrated the effectiveness of endovascular techniques leading to continued technological development and applications for various diseases. The utilization of optical technologies and devices is already underway in the field of endovascular neurosurgery. We discuss the contemporary paradigms, challenges, and current optical applications for the most common cerebrovascular diseases: carotid atherosclerotic disease, cerebral aneurysms, intracranial atherosclerosis, and dural arteriovenous fistulas. We also describe needs-based opportunities for future optical applications, with the goal of providing researchers a sense of where we feel optical technologies could impact the way we manage cerebral disease.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.