This paper discusses the scatterometry-based measurement of a complex thin-spacer PFET structure containing an
embedded SiGe (eSiGe) trench. The thickness of the spacer and the overfill of the eSiGe trench are critical
measurement parameters for such a structure. Although the corresponding NFET structure does not contain the eSiGe-filled
trench, it is also found to be a good barometer of thin-spacer measurement capability and so is also used in the
study. First, the paper discusses the dispersion analysis challenges and approaches for these 45 nm node structures.
Next, two sets of scatterometry hardware, one in production and one under development, are used to measure the critical
parameters in order to understand the differences in measurement performance between the systems. Transmission
Electron Microscopy (TEM) analysis is used as a reference metrology to assess the accuracy performance of the
hardware. Results show that the advanced optics of the newer system significantly improves the dynamic repeatability
of the parameters compared to the older system, while the newer system's extended wavelength range down into the
deep UV (DUV) can provide a noticeable improvement in measurement accuracy due to the significantly greater
parameter sensitivity in this wavelength range.
In the 90nm node and beyond, Critical Dimension Uniformity (CDU) control is essential for today's high performance IC devices. The desired control of CDU is just under 2nm (3 sigma) across a 300mm wafer with 577 die. In this study we used an Opti-Probe 7341 RT/CD system that combines broadband (190-840 nm) spectroscopic ellipsometry (SE), spectroscopic reflectometry (BB), single wavelength (673 nm) beam profile reflectometry (BPR) and single wavelength (633nm) absolute ellipsometry (AE). All of the above technologies were used to characterize the optical dispersions of the individual films in the stack of interest, resist/barc/sion/poly/oxide/silicon. We then used these dispersion results and the SE and BB technologies to characterize the CDU of the patterned wafer. With the SE technology we measured CDU's in the range of 1.9-2.0 nm compared with BB measured CDU's in the range of 4-5 nm, both SE and BB wavelength were in the range of 240 nm-780 nm. However, if the wavelength range of SE and BB were extended to 190nm-840 nm, the CDU with SE stayed at the same level while that of BB reduced a factor of 2 to about 2.0-2.5 nm.
In this study, the optical properties of amorphous carbon (aC) ARC films are investigated using an Opti-probe OP7341, and a metrology solution that robustly measures a broad range of process conditions is presented. We find that the aC material is consistent with uni-axial anisotropy, and that this effect may have important implications for photolithography. These results are obtained through the combination of multiple technologies in one tool: spectroscopic ellipsometry (SE); spectroscopic reflectometry or broadband (BB), with a wavelength range of 190-840 nm; single wavelength (673 nm) but multiple incident angle beam profile reflectometry (BPR) and beam profile ellipsometry (BPE), and single wavelength (633nm) absolute ellipsometry (AE). The combination of technologies at multiple angles and wavelengths provides additional optical information and sensitivity not possible with single-technology approaches. A complex wavelength dependent anisotropy model was developed for this analysis, and is compared with a real anisotropy model. The complex anisotropy model and the effective medium approximation (EMA) with two and three components were applied to a set of 12 wafer set with thickness swing aC films in the range of 500-750 Å as well as a second set of 23 pre- and post- etch wafers. The complex anisotropy model clearly has the advantage of best fit the BPR profiles along with the SE Fourier coefficients. The etch rate obtained by the complex anisotropy also showed a much narrower variation as compared with the EMA2 and EMA32 models with the real anisotropy.
In real-time optical CD applications of shallow trench isolation (STI), shallow trench removal (STR), deep trench isolation (DTI), and deep trench removal (DTR), a single recipe is required for each type of application to accommodate wide ranges of process windows by monitoring parameters such as bottom CD (BCD), middle CD (MCD), top CD (TCD) and side wall angle (SWA). The modeling of the grating profiles of silicon trenches with nitride caps requires a large number of slices (> 10) to generate smooth shapes for top rounding of the nitride, curvature of the silicon trench waist, and the silicon trench footing or undercut. The number of orders for Fourier expansion is also high (larger than 13 in the best case). With these requirements we found that the rigorous coupled wave analysis (RCWA) algorithm is generally too slow to calculate the CD profiles from the raw scatterometry spectra. In this paper we present a finite difference (FD) algorithm and its applications to real-time CD scatterometry. The mathematical analysis of the FD algorithm was published elsewhere. We demonstrate that the FD algorithm has an advantage over RCWA in terms of calculation speed (up to a factor of 10 improvement), better capture of profile shapes in comparison with cross sectional SEM (X-SEM) and more robust in terms of numerical stability. Details of comparisons between FD and RCWA will be shown for the applications of STR and DTR.
In the l30nm process, controlling the critical dimension uniformity (CDU) within a wafer is crucial. In order to minimize CDU within a wafer, CD swing amplitude against film thickness must be minimized. It is observed that the CD swing amplitude is closely related to the reflectivity of the anti-reflective coating (ARC) layer under the resist. The suppressed reflectivity (ideally zero) from the ARC layer and underlying layers can be achieved by properly selecting a combination of thickness (T), refractive index (N) and extinction coefficient (K) of the ARC layer. Accurate and repeatable measurements of T, N, and K at a wavelength of 193nm play a key role in this film optimization process. In this paper we propose a new method to simultaneously measure T, N, and K for various silicon oxynitride (SION) and organic ARC films. The new methodology uses a multi-domain genetic algorithm (MDGA) to search for global fitting residual minima for SION and organic ARC films using 21-point line-scan data sets logged on each wafer with a combination of BPR, AE and SE measurement technologies. The MDGA-obtained dispersion curves form constituents of a Bruggeman effective medium approximation (EMA) model. By using this unique metrology tool combination, swing amplitudes can be reduced to less than 5nm. The measurement variations of N&K at 193nm from machine to machine on SION and organic ARC films can be minimized to as small as 0.002. We point out that there are no 193nm N&K standards in the world. In this work, we used a set of Therma-Wave standards with thicknesses traceable to NIST standards. We also used the published thermal oxide and crystalline Si dielectric constants (i.e., N&Ks) as our standards for dispersion. The matching of SE (as well as the other technologies) of each tool is ensured through calibrations of SE to the same set of standards. Finally, a recipe using the combination of BPR, AE, and SE technologies allows one to deal with the large TNK variations encountered in the production environment without losing the sensitivity to measure TNK precisely and accurately. On the contrary, a TNK recipe with SE technology only may yield reasonable precision results but would lose the sensitivity to the thin film TNK variation within the wafer and among the wafers.
We have developed a new Multi-domain Genetic Algorithm (MDGA) as a tool for advanced recipe development and applied it to metrology based on X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE). In our MDGA approach, multiple data sets are examined with the output being an optimal set of parameters for robust and rapid measurements. The data sets usually span the expected range of variations likely to be encountered in a process to be monitored (e.g., the data sets correspond to different thickness but with the same density or dispersion).In one application involving XRR measurements, a set of Ti films with thickness of 200 Å was plasma treated for 0 sec, 10 sec, 30 sec, 50 sec, and 100 sec. Although it was expected that the plasma treated Ti film had a higher density than the non-treated Ti film, we found that the plasma treated Ti film had to be modeled as a two-layer film stack: the plasma treated Ti on top of a regular Ti. Without the MDGA, the densities of the top plasma treated Ti and the bottom Ti traded off since they are so close. With the MDGA, the densities of the top and bottom Ti films were regarded as global optimization parameters while the thickness and roughness of each layer were allowed to vary as local parameters. Our results show that the MDGA can clearly separate the plasma treated Ti from the untreated Ti film across the entire wafer set. On the other hand normal non-linear regression methods cannot distinguish the plasma treated Ti from the untreated Ti. In an application using SE measurement of a bottom anti-reflective coating (BARC) material, a linescan of 11 points across a 200mm wafer was measured with the thickness of the BARC film treated as a local parameter while the dispersion was treated as a set of global parameters. With the help of the MDGA, the dispersion modeling of the BARC film captured two main features at ~ 4.77 eV (260nm) and ~ 5.07 eV(235nm), as well as three small peaks at 3.16 eV(392nm), 3.37 eV (368nm) and 3.53 eV (351nm). In this way, the measured dispersion of the BARC film is more representative of the entire wafer than any dispersion developed from a single point measurement.
We have developed a rapid XRR system that is capable of acquiring the reflectivity data in the angular range of 0.1 - 1.6 degree in less than 20 sec. The data were analyzed to obtain the thickness, density and roughness of the film of interest in a few seconds. The system consisted of an x-ray source with a tungsten target and a Si monochromator, a sample stage, and a 1024-pixel photo-diode array. The system was used to characterize the multiple film stack of Ta/Al2O3/Ta/SiO2/Si. The Ta and Al films were sputtered onto the SiO2/Si substrate and the Al was oxidized to form the film of Al2O3. The thickness of the Ta layers was about 100 angstrom while the thickness of Al2O3 varied from 40 angstrom to 200 angstrom. The XRR sensitivity to parameters such as thickness, density, and roughness of the Ta and Al2O3 layer was also studied. We found that the XRR can measure the thickness and density of each layer with a standard deviation less than 0.5% and 1.5% of the target thickness and density, respectively. The roughness was found to have a standard deviation better than 1 angstrom. We also found that the density of the film of Al2O3 varied from 2.7 - 4.0 g/cm3, indicating that the stoichiometry of the Al2O3 films ranged from the non-oxidized pure Al to the fully oxidized Al2O3. The information of the thickness, density and roughness of each of the Ta and Al2O3 films from XRR is particularly useful to nondestructively monitor the thin film deposit conditions in real time.
High-k gate dielectric films with equivalent oxide thickness (EOT) of 3 nm or less are becoming the main theme of research and development in ultra-large-scale integrated circuits industry with device dimensions scaled down to less than 130 nm. Among the high-k gate dielectric materials hafnium dioxide (HfO2) is very promising with its high dielectric constant (approximately 30) and stability in contact with Si. The samples were prepared with a DC magnetron-reactive sputtering method and subsequently annealed in the furnace with a temperature range of 500- 850 degree(s)C. The thickness of the HfO2 varied from 3.5- 18nm with a hafnium silicate interface layer of approximately 1 nm. The electrical measurement showed that the breakdown voltage is inversely proportional to the physical thickness, suggesting the breakdown process occur at the HfO2 thin film rather than in the interface layer. To measure the physical thickness of hafnium dioxide and hafnium silicate interface simultaneously, a research grade bench top rotating compensator spectroscopic ellipsometry (RCSE) in the wavelength range of 195-915 nm was used. The dispersion of HfO2 film was characterized with a two-peak critical point (CP) model and the dispersion of the interface layer of hafnium silicate was characterized with a five-peak CP model. An interface layer thickness of 0.7-2 nm was found for all hafnium dioxide films on Si, depending on the process conditions such as annealing temperature and oxygen flow rate. The same wafers measured by RCSE were later studied by transmission electron microscopy (TEM). The thickness of hafnium dioxide and hafnium silicate determined by TEM is in good agreement with the noninvasive RCSE method.
We developed a robust measurement recipe for six layer SOI film stack. Both spectrometer and BPR were combined to characterize the plate and storage polysilicons. A new global optimization method was developed to find the best solution in parameter spaces with up to 12 parameters. Such a recipe was applied to production wafers with over 50 site die mapping. The 5 day repeatability shows the measurements were stable and robust.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.