Several near-infrared instruments on upcoming extremely large telescopes use a combination of OHARA S-FPL51 and S-LAH71 glass prisms to correct for the atmospheric differential refraction. Because large parts of these instruments are contained within a vessel cooled to liquid nitrogen temperatures, the changes in optical and mechanical properties should be considered during the design phase.
In this report, we provide an update to our continuing efforts to characterize the S-FPL51 and S-LAH71 glass under cryogenic conditions. These efforts include a measurement of the refractive index (293 K, 100 K and 80 K), transmission measurements (293 K, 77 K and 43 K) and a determination of the coefficient of thermal expansion (between 293 K and 45 K). We will describe the cryogenic test setups that we have used to obtain our results, and provide summarizing equations of these material properties.
This characterization will prove useful for conceptual design trade-offs, mechanical interface solutions and detailed optical design for future near-infrared instrumentation on large telescopes.
MICADO is a first light instrument for the Extremely Large Telescope (ELT), set to start operating later this decade. It will provide diffraction limited imaging, astrometry, high contrast imaging, and long slit spectroscopy at near-infrared wavelengths. During the initial phase operations, adaptive optics (AO) correction will be provided by its own natural guide star wavefront sensor. In its final configuration, that AO system will be retained and complemented by the laser guide star multi-conjugate adaptive optics module MORFEO (formerly known as MAORY). Among many other things, MICADO will study exoplanets, distant galaxies and stars, and investigate black holes, such as Sagittarius A* at the centre of the Milky Way. After their final design phase, most components of MICADO have moved on to the manufacturing and assembly phase. Here we summarize the final design of the instrument and provide an overview about its current manufacturing status and the timeline. Some lessons learned from the final design review process will be presented in order to help future instrumentation projects to cope with the challenges arising from the substantial differences between projects for 8-10m class telescopes (e.g. ESO’s VLT) and the next generation Extremely Large Telescopes (e.g. ESO’s ELT). Finally, MICADO's expected performance will be discussed in the context of the current landscape of astronomical observatories and instruments. For instance, MICADO will have similar sensitivity as the James Webb Space Telescope (JWST), but with six times the spatial resolution.
The Mid-infrared ELT Imager and Spectrograph (METIS) is one of the first-generation scientific instruments for the ELT, built under the supervision of ESO by a consortium of research institutes across and beyond Europe. Designed to cover the 3 to 13 μm wavelength range, METIS had its final design reviewed in Fall 2022, and has then entered in earnest its manufacture, assembly, integration, and test (MAIT) phase. Here, we present the final design of the METIS high-contrast imaging (HCI) modes. We detail the implementation of the two main coronagraphic solutions selected for METIS, namely the vortex coronagraph and the apodizing phase plate, including their combination with the high-resolution integral field spectrograph of METIS, and briefly describe their respective backup plans (Lyot coronagraph and shaped pupil plate). We then describe the status of the MAIT phase for HCI modes, including a review of the final design of individual components such as the vortex phase masks, the grayscale ring apodizer, and the apodizing phase plates, as well as a description of their on-going performance tests and of our plans for system-level integration and tests. Using end-to-end simulations, we predict the performance that will be reached on sky by the METIS HCI modes in presence of various environmental and instrumental disturbances, including non-common path aberrations and water vapor seeing, and discuss our strategy to mitigate these various effects. We finally illustrate with mock observations and data processing that METIS should be capable of directly imaging temperate rocky planets around the nearest stars.
The differential refraction of light passing through the atmosphere can have a severe impact on image quality if no atmospheric dispersion corrector (ADC) is used. For the Extremely Large Telescope (ELT) this holds true up into the infrared. MICADO, the near-infrared imaging camera for the ELT, will employ a cryogenic ADC consisting of two counter-rotating Amici prisms with diameters of 125 mm. The mechanism will reduce the atmospheric dispersion to below 2.5 milli arcseconds (mas), with a set goal of 1 mas. In this report, we provide an overview of the current status of the ADC in development for MICADO. We summarise the optomechanical design and discuss how the cryogenic environment impacts the performance. We will also discuss our plan to use a diffraction mask in the cold pupil to calibrate and validate the performance, once the instrument is fully integrated.
We present our investigation into the impact of wavefront errors on high accuracy astrometry using Fourier Optics. MICADO, the upcoming near-IR imaging instrument for the Extremely Large Telescope, will offer capabilities for relative astrometry with an accuracy of 50 micro arcseconds (mas). Due to the large size of the point spread function (PSF) compared to the astrometric requirement, the detailed shape and position of the PSF on the detector must be well understood. Furthermore, because the atmospheric dispersion corrector of MICADO is a moving component within an otherwise mostly static instrument, it might not be sufficient to perform a simple pre-observation calibration. Therefore, we have built a Fourier Optics framework, allowing us to evaluate the small changes in the centroid position of the PSF as a function of wavefront error. For a complete evaluation, we model both the low order surface form errors, using Zernike polynomials, and the mid- and high-spatial frequencies, using Power Spectral Density analysis. The described work will then make it possible, performing full diffractive beam propagation, to assess the expected astrometric performance of MICADO.
We present the preliminary optical design of METIS, the Mid-infrared E-ELT Imager and Spectrograph, and study the end-to-end performance regarding wavefront errors and non-common path aberrations. We discuss the results of the Monte Carlo simulations that contain the manufacturing and alignment errors of the opto-mechanical system. We elaborate on the wavefront error budget of the instrument detailing all contributors. We investigate the mid and high spatial frequency errors of the optical surfaces, which we model using simulated surface height errors maps of one dimensional Power Spectral Density (PSD) functions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.