The Telescopio San Pedro Mártir project intends to build a 6.5 meters telescope with alt-azimuth mount and it has currently finished the preliminary design. The project is an association between Instituto de Astronomía de la Universidad Nacional Autónoma de México and the Instituto Nacional de Astrofísica, Óptica Electrónica in partnership with the University of Arizona and the Smithsonian Astrophysical Observatory. The telescope preliminary design this is lead and developed at Querétaro by the Centro de Ingeniería y Desarrollo Industrial. An overview of the preliminary design and the structural design updates are summarized in this paper.
The Telescopio San Pedro Martir project intends to construct a 6.5m telescope to be installed at the Observatorio Astron´omico Nacional in the Sierra San Pedro M´artir in northern Baja California, Mexico. The project is an association of Mexican institutions, lead by the Instituto Nacional de Astrofısica, Optica y Electronica and UNAM’s Instituto de Astronomia, in partnership with the Smithsonian Astrophysical Observatory and the University of Arizona’s Department of Astronomy and Steward Observatory. The project is advancing through the design stage, having completed five design reviews of different subsystems in 2016 and 2017 (enclosure and services: PDR, CDR; optical design: PDR; optics: progress review; telescope: PDR). Once completed, the partners plan to operate the MMT and TSPM as a binational astrophysical observatory.
FRIDA is a diffraction-limited imager and integral-field spectrometer that is being built for the adaptive-optics focus of the Gran Telescopio Canarias. In imaging mode FRIDA will provide scales of 0.010, 0.020 and 0.040 arcsec/pixel and in IFS mode spectral resolutions of 1500, 4000 and 30,000. FRIDA is starting systems integration and is scheduled to complete fully integrated system tests at the laboratory by the end of 2017 and to be delivered to GTC shortly thereafter. In this contribution we present a summary of its design, fabrication, current status and potential scientific applications.
Gengis Toledo-Ramirez, Vicente Bringas-Rico, Noe Reyes, Jorge Uribe, Aldo Lopez, Carlos Tovar, Xochitl Caballero, Luis Del-Llano, Cesar Martinez, Eduardo Macias, William Lee, Alberto Carramiñana, Michael Richer, Jesús González, Beatriz Sanchez, Diana Lucero, Rogelio Manuel, Jose Segura, Saul Rubio, German Gonzalez, Obed Hernandez, Mary García, Jose Lazaro, Fabian Rosales-Ortega, Joel Herrera, Gerardo Sierra, Hazael Serrano
KEYWORDS: Optical instrument design, Telescope design, Mirrors, Telescopes, Telescopes, Optical instrument design, Mirrors, Astronomy, Control systems, Systems engineering, Manufacturing, Systems modeling, Control systems design
The Telescopio San Pedro Martir (TSPM) is a new ground-based optical telescope project, with a 6.5 meters honeycomb primary mirror, to be built in the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) located in Baja California, Mexico. The OAN-SPM has an altitude of 2830 meters above sea level; it is among the best location for astronomical observation in the world. It is located 1830 m higher than the atmospheric inversion layer with 70% of photometric nights, 80% of spectroscopic nights and a sky brightness up to 22 mag/arcsec2.
The TSPM will be suitable for general science projects intended to improve the knowledge of the universe established on the Official Mexican Program for Science, Technology and Innovation 2014-2018. The telescope efforts are headed by two Mexican institutions in name of the Mexican astronomical community: the Universidad Nacional Autonoma de Mexico and the Instituto Nacional de Astrofisica, Optica y Electronica. The telescope has been financially supported mainly by the Consejo Nacional de Ciencia y Tecnologia (CONACYT). It is under development by Mexican scientists and engineers from the Center for Engineering and Industrial Development. This development is supported by a Mexican-American scientific cooperation, through a partnership with the University of Arizona (UA), and the Smithsonian Astrophysical Observatory (SAO). M3 Engineering and Technology Corporation in charge of enclosure and building design.
The TSPM will be designed to allow flexibility and possible upgrades in order to maximize resources. Its optical and mechanical designs are based upon those of the Magellan and MMT telescopes. The TSPM primary mirror and its cell will be provided by the INAOE and UA. The telescope will be optimized from the near ultraviolet to the near infrared wavelength range (0.35-2.5 m), but will allow observations up to 26μm. The TSPM will initially offer a f/5 Cassegrain focal station. Later, four folded Cassegrain and two Nasmyth focal stations are contemplated, nominally with focal ratios of f/5 and f/11. The concept will allow the use of existing instruments like MMIRS and MEGACAM. Available experience from currently working ground-based telescopes will be integrated with up-to-date technology specially for control and information management systems.
Its mount is the well-known azimuth-elevation configuration. The telescope total mass is estimated in about 245 metric tons, with a total azimuth load of 185 metric tons including around 110 metric tons as the total elevation load. A tracking error lower than 0.03 arcsec RMS is expected under steady wind up to 50 Km/h. An open-loop pointing accuracy between 10 and 2 arcsec is planned. The TSPM is in its design phase. It is the first large optical ground-based telescope to be designed and developed primarily by Mexican scientists and engineers. This endeavor will result in the improvement of the scientific and technical capabilities of Mexico including complex scientific instruments development, systems engineering and project management for large engineering projects. In this paper, which aims to gather the attention of the community for further discussions, we present the engineering preliminary design, the basic architecture and challenging technical endeavors of the TSPM project.
Jorge Uribe, Vicente Bringas, Noe Reyes, Carlos Tovar, Aldo López, Xóchitl Caballero, César Martínez, Gengis Toledo, William Lee, Alberto Carramiñana, Jesús González, Michael Richer, Beatriz Sánchez, Diana Lucero, Rogelio Manuel, Saúl Rubio, Germán González, Obed Hernández, José Segura, Eduardo Macias, Mary García, José Lazaro, Fabián Rosales, Luis del Llano
Telescopio San Pedro Mártir (TSPM) project intends to build a 6.5 meters telescope with alt-azimuth design, currently at the conceptual design. The project is an association between Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM) and the Instituto Nacional de Astrofísica, Óptica Electrónica (INAOE) in partnership with department of Astronomy and Steward Observatory of University of Arizona and Smithsonian Astrophysical Observatory of Harvard University. Conceptual design of the telescope is lead and developed by the Centro de Ingeniería y Desarrollo Industrial (CIDESI). An overview of the feasibility study and the structural conceptual design are summarized in this paper. The telescope concept is based on telescopes already commissioned such as MMT and the Baade and Clay Magellan telescopes, building up on these proven concepts. The main differences relative to the Magellan pair are; the elevation axis is located 1 meter above the primary mirror vertex, allowing for a similar field of view at the Cassegrain and both Nasmyth focal stations; instead of using a vane ends to position the secondary mirror TSPM considers an Steward platform like MMT; finally TSPM has a larger floor distance to m1 cell than Magellans and MMT. Initially TSPM will operate with an f/5 Cassegrain station, but the design considers further Nasmyth configurations from a Cassegrain f/5 up to a Gregorian f/11. The telescope design includes 7 focal stations: 1 Cassegrain; 2 Nasmyth; and 4 folded-Cassegrain. The telescope will be designed and manufactured in Mexico, will be design in Queretaro by CIDESI and built between Queretaro and Michoacán manufacturing facilities; it will be preassembled in these facilities and disassembled to send it to the San Pedro Mártir Observatory for final integration. The azimuth and altitude structure is planned to be constructed in modules and transported by truck and shipped to Ensenada and finally to the OAN where is going to be finally assembled, verified and tested.
The Telescopio San Pedro Mártir project intends to construct a 6.5m telescope to be installed at the Observatorio Astronómico Nacional in the Sierra San Pedro Mártir in northern Baja California, Mexico. The project is an association of Mexican institutions, lead by the Instituto Nacional de Astrofísica, Óptica y Electrónica and the Instituto de Astronomía at the Universidad Nacional Autónoma de México, in partnership with the Smithsonian Astrophysical Observatory and the University of Arizona’s Department of Astronomy and Steward Observatory. The project is currently in the planning and design stage. Once completed, the partners plan to operate the MMT and TSPM as a binational astrophysical observatory.
KEYWORDS: Cameras, Collimators, Mirrors, Current controlled current source, Diffraction, Near infrared, Iterated function systems, Cryogenics, Spectrographs, Prototyping
FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias
(GTC)) is designed as a diffraction limited instrument that will offer broad and narrow band imaging and
integral field spectroscopy capabilities with low, intermediate and high (R ~ 30,000) spectral resolutions, to
operate in the wavelength range 0.9 – 2.5 μm. The integral field unit is based on a monolithic image slicer and
the imaging and IFS observing modes will use the same Teledyne 2Kx2K detector. FRIDA will be based on a
Nasmyth B of GTC, behind the adaptive optics (AO) system. The key scientific objectives of the instrument
include studies of solar system bodies, low mass objects, circumstellar outflow phenomena in advanced stages
of stellar evolution, active galactic nuclei high redshift galaxies, including resolved stellar populations, semidetached
binary systems, young stellar objects and star forming environments. FRIDA subsystems are
presently being manufactured and tested. In this paper we present the challenges to perform the verification of
some critical specifications of a cryogenic and diffraction limited NIR instrument as FRIDA. FRIDA is a
collaborative project between the main GTC partners, namely, Spain, México and Florida.
FRIDA is a diffraction limited imager and integral field spectrometer that is being built for the Gran Telescopio
Canarias. FRIDA has been designed and is being built as a collaborative project between institutions from México, Spain
and the USA. In imaging mode FRIDA will provide scales of 0.010, 0.020 and 0.040 arcsec/pixel and in IFS mode
spectral resolutions R ~ 1000, 4,500 and 30,000. FRIDA is starting systems integration and is scheduled to complete
fully integrated system tests at the laboratory by the end of 2015 and be delivered to GTC shortly after. In this
contribution we present a summary of its design, fabrication, current status and potential scientific applications.
KEYWORDS: Control systems, Electronics, Control systems design, Sensors, Prototyping, Temperature sensors, Photonic integrated circuits, Human-machine interfaces, Optical benches, Infrared radiation
FRIDA will be a common-user near infrared imager and integral field spectrograph covering the wavelength range from
0.9 to 2.5 microns. Primary observing modes driven the instrument design are two: direct imaging and integral field
spectroscopy. FRIDA will be installed at the Nasmyth-B platform of the Gran Telescopio Canarias (GTC) behind the
GTC Adaptive Optics (GTCAO) system. Instrument will use diffraction-limited optics to avoid degrading the high Strehl
ratios derived by the GTCAO system in the near infrared.
High-performance astronomical instruments with a high reconfiguration degree as FRIDA, not only depends on optical
and mechanical efficient designs but also on the good quality of its electronics and control systems design. In fact,
astronomical instruments operating performance on telescope greatly relies on electronics and control system. This paper
describes the main design topics for the FRIDA electronics and mechanisms control system, pointing on the
development that these areas have reached on the project status. FRIDA Critical Design Review (CDR) was held on
September 2011.
FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) is designed as
a diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy capabilities
with low (R ~ 1,500), intermediate (R ~ 4,500) and high (R ~ 30,000) spectral resolutions to operate in the wavelength
range 0.9 - 2.5 μm. The integral field unit is based on a monolithic image slicer. The imaging and IFS observing modes
will use the same Teledyne 2K x 2K detector. FRIDA will be based at the Nasmyth B platform of GTC, behind the AO
system. The key scientific objectives of the instrument include studies of solar system bodies, low mass objects,
circumstellar outflow phenomena in advanced stages of stellar evolution, active galactic nuclei, high redshift galaxies,
resolved stellar populations, semi-detached binary systems, young stellar objects and star forming environments. FRIDA
is a collaborative project between the main GTC partners, namely, Spain, México and Florida. In this paper, we present
the status of the instrument design as it is currently being prepared for its manufacture, after an intensive prototypes'
phase and design optimization. The CDR was held in September 2011.
FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) has been
designed as a cryogenic and diffraction limited instrument that will offer broad and narrow band imaging and integral
field spectroscopy (IFS). Both, the imaging mode and IFS observing modes will use the same Teledyne 2Kx2K detector.
This instrument will be installed at Nasmyth B station, behind the GTC Adaptive Optics system. FRIDA will provide the
IFS mode using a 30 slices Integral Field Unit (IFU). This IFU design is based on University of Florida FISICA where
the mirror block arrays are diamond turned on monolithic metal blocks.
FRIDA IFU is conformed mainly by 3 mirror blocks with 30 spherical mirrors each. It also has a Schwarzschild relay
based on two off axis spherical mirrors and an afocal system of two parabolic off axis mirrors. Including two insertion
mirrors the IFU holds 96 metal mirrors.
Each block or individual mirror is attached on its own mechanical mounting. In order to study beam interferences with
mechanical parts, ghosts and scattered light, an iterative optical-mechanical modeling was developed. In this work this
iterative modeling is described including pictures showing actual ray tracing on the opto-mechanical components.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.